2.1. Types of Synthesis of Mechanisms

- Function generation
 The correlation of an input motion with an output motion.
 \[\theta = f(\beta) \]
 - Mechanical analog computers
 - Mechanical function generators applications
 - Artillery rangefinders and shipboard gun aiming system

- Path generation
 The control of a point in the plane such that it follows some prescribed path.
2.1. Types of Synthesis

- **Motion generation**

 The control of a line in the plane such that it passes some prescribed set of sequential positions. Orientation of the link containing the line is important.

The course scope: Motion Two Position Synthesis

2.2. Extreme positions

- **4 bar mechanism**

Theory of machines and multibody (MCT251) – Chapter 2: Graphical Linkage Synthesis

Hedaya, M.
2.2. Extreme positions (cont.)

- From A
 Open the compass with length $AB + BC$

- From D
 Open the compass with length DC

2.2. Extreme positions (cont.)

- From A
 Open the compass with length $BC - AB$

- From D
 Open the compass with length DC
2.2. Extreme positions (cont.)

- From 1 to 2: β
- From 2 to 1: φ

\[
\delta = \beta - 180^\circ =, \delta = 180^\circ - \varphi \\
\delta = 180^\circ - \varphi \\
2\delta = \beta - \varphi
\]

2.3. Synthesis of four-bar mechanism

2.3.1. Rocker-output

2.3.1.1. Equal time for go and return

Angular displacements

Complex motion

2.3.1.2. Quick return

2.3.2. Coupler-output
2.3.1.1. Rocker-output, equal time for go and return

- Angular displacement

![Diagram](image)

- Ground: OQ
- Crank: OA
- Coupler: AB
- Output: QB
2.3.1.1. Rocker-output, equal time for go and return (cont.)

- **Angular displacement**
 - **Given**
 - Angle
 - **Steps**
 1. Draw the output link in both extreme positions, in any convenient location.
 2. Draw the chord B_1B_2 and extend it in any convenient direction.
 3. Select a convenient point O on line B_1B_2 extended.
 4. Bisect line segment B_1B_2, and draw a circle of that radius about O.
 5. Label the two intersections of the circle and B_1B_2 extended, A_1 and A_2.
 6. Measure the length of the coupler as A_1 to B_1 or A_2 to B_2.
 7. Measure ground length, crank length, and rocker length.

"Theory of Machines and Multi-body (MCT251) - Chapter 2: Graphical Synthesis of Mechanisms" by Hedaya, M.
2.3.1.1. Rocker-output, equal time for go and return (cont.)

- **Complex motion**
 - Ground: OQ, specific position of Q
 - Crank: OA
 - Coupler: AB
 - Output: QBDC (specific shape)

- **Given**
 - Two positions of a line

- **Steps**
 1. Draw line from point D_1 to D_2 and bisect it.
 2. Draw line from point C_1 to C_2 and bisect it.
 3. Set the intersection of the bisectors as a grounded pair of the rocker.
 4. Construct the rocker.
 5. Draw arc of a suitable radius to determine a connection point B.
 6. Draw the output link in both extreme positions, in any convenient location.
2.3.1.1. Rocker-output, equal time for go and return (cont.)

- Complex motion
 - Given
 - Two positions of a line
 - Steps (cont.)
 7. Draw the chord B_1B_2 and extend it in any convenient direction.
 8. Select a convenient point O on line B_1B_2 extended.
 9. Bisect line segment B_1B_2, and draw a circle of that radius about O.
 10. Label the two intersections of the circle and B_1B_2 extended, A_1 and A_2.
 11. Measure the length of the coupler as A_1 to B_1 or A_2 to B_2.
 12. Measure ground length, crank length, and rocker length.

2.3.1.2. Rocker-output, quick return

- Angular displacement
2.3.1.2. Rocker-output, quick return (cont.)

- **Angular displacement**
 - Given
 - Angle
 - Steps
 1. Draw the output link in both extreme positions, in any convenient location.
 2. Construct a line through a point B_1 in any convenient angle.
 3. Construct a line through a point B_2 at angle δ with the previous line.
 4. Label the intersection of the two lines O.
 5. Draw a circle with centre O and radius equal crank length $= (OB_1 - OB_2)/2$.
 6. Label the intersections of the circle and OB_1 and with OB_2 extension as A_1 and A_2.
 7. Measure the length of the coupler as A_1 to B_1 or A_2 to B_2.
 8. Measure ground length and rocker length.
2.3.2. Coupler-output

- Complex motion

![Diagram](image_url)

- Ground: OQ
- Rockers: OC, QD
- Coupler/Output: CD

2.3.2. Coupler-output (cont.)

- Complex motion (cont.)

![Diagram](image_url)
2.3.2. Coupler-output (cont.)

- Complex motion
 - Given
 - Two positions of a line
 - Steps
 1. Draw line from point D_1 to D_2 and bisect it.
 2. Draw line from point C_1 to C_2 and bisect it.
 3. Select suitable positions for grounded pairs O and Q.
 4. Measure the length of the rockers OC and QD
 5. Measure ground length.
 6. Check that the mechanism is double-lever. If not repeat steps from step 3.

2.4. Solved examples

- Design a four-bar mechanism to produce 30° rocking angle of the output.
2.4. Solved examples

- Design a four-bar mechanism to produce 30° rocking angle of the output, where the ratio between forward and return times is 1.5:1.

- Design a four-bar mechanism to transfer the shown box between the shown positions, where the ratio between forward and return times is 1.5:1.
2.4. Solved examples

- Design a four-bar mechanism to transfer the shown box between the shown positions. Use the coupler as an output link.