Heogskolen i Telemark

Telemark University College
Department of Electrical Engineering, Information Technology and Cybernetics

Introduction to LabVIEW

HANS-PETTER HALVORSEN, 2014.03.07

High-Level Design Tools

Configuration Textual Math Simulation Statechart
o= = Tc= 0285 +0013; p— o
= 2[X Y] = meshgrid(x, y); =]
3z=X+iY, ] ) e ﬁ“"‘
x| me.'ao (> ?} m Fillng ) |
Il 5 2=22+¢ E
.| Gend
f 4 &=E)

Graphical Programming

Linux® Macintosh

H M

Desktop Platform

Real-Time FPGA

Embedded Platform

mFaculty of Technology, Postboks 203, Kjglnes ring 56, N-3901 Porsgrunn, Norway. Tel: +47 35 57 50 00 Fax: +47 35 57 54 0|



Preface

This document explains the basic concepts of LabVIEW.
You find additional resources, code, etc. here:
http://home.hit.no/~hansha/?tutorial=labview

You need to install the LabVIEW Professional Development System.

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/



Table of Contents

e =) - 1ol OOV RP TSR PRRRRN ii
Table Of CONTENTS.....eiiieieeee e e e e e e e es iii
R 1016 e Yo 01 T o TRV PPROP 1
1.1 Dataflow Programming......occcccciiiiiiiieiiieeeee e ee et re e e e e e e e e e e e e e sesseansrarareeeeeeeeens 1
1.2 Graphical Programming ....cocccccciiiiiiriiiiiee e e e e ee e e e e e e e e eeeeeeesesseaasraresereeeeeeens 1
S T == 0T ) TSP OPRP 2

2 STArt USING LADVIEW ..ottt e et e e e e e e e e e e e e e e e e s e s sansssssaaneeeeeeeas 4
2.1 The LabVIEW ENVIFONMENT ....oeiiiiiiieeieeeee et 4
2.2 FrONT PANEl oo e 5
2.3 BlOCK DI@IamM ..uuuuiiieeeeeiieeeeeeeeeeeeieecicetrrrrreeeeeeeeeeeeeeeesessessnsssssssarereeeseeaeeeeeeessessassnnsrnnes 7
2.4 CONrOlS PAlEtLe ..c.eeieeieeeee e e 10
2.4 1 NUMEriC SUD Palette ...cooueiiiiiiiieceeee e 12
2.4.2 Boolean Sub Palette.........coouiiiiiiiiieeiecee e 13
2.4.3  String & Path SUD Palette......ccoooeicieeeee e 13

2.5  FUNCHION PalEte. i i 13
2.6 TOOIS PAlELLO ...ttt 14

B A V1V 1 1o =Rt 16
P2 B o To] | - | PSPPSRSO 16
2.9 EXECULION oottt 17
2.10 The Objects ShOrt-CUt MENU ......coccciiiiiiiirieeeeeeee e rrrreere e e e e e e e e e e e e e s e e senanns 18
2.11  Dataflow Programming ........coooeiieciiiiiiiiiiiieeeeeeeeeeeeeee e reereeeeeeeeeeeeeesessnnanns 19

D A =1 [ RO P PPUUPPPRRRRN 20
EXEICISES ettt e 20



iv Table of Contents

3 SUBD VIS et e st e e e e e e reeeas 24
3.1 Create New Sub VI from SCratCh.........coocueiriiiiiiiicce e 26
3.1.1  Input and Output SUBVI CONNECTONS.......uirriririeiieeieee e e e e e ee e 26
3.1.2 1CON EAITOT i 28

3.2 Create Sub VI from existing COUE......ccicvuiiriiiiiieiiieee e e e e e e e e 29
3.3 USING SUD VIS ittt ettt ree e et e e e e e e e e e e e s ee s s e nbbssbaeaeeeeeeeaaeeeessessnnnanes 30
EXEICISES ettt 31

4 CuStOMIZE LADVIEW ...ttt 33
EXEICISES ettt e 34

I oo o1 T o Y 4 U o1 (U [ TP UPPPPPTRRN 35
Lo 01 R o o o 1 35

o 01 0 A o o Yo Y o SN 36
LT B V.V o V1 [ e Yo« U OO 37

5.2 STIUCTUIES cooiiiiiiiiii e 38
5.2.1  CaSE STIUCKTUIE....ctiiiiiiiiiiiiiceiicc e 38
5.2.2  SeqUENCE STIUCTUIE oiie et e et e e e e e e e e e e eeaae e e e eeees 39
5.2.3  EVENt STrUCTUre ....cciiiiiiiiiii 40
EXEICISES ettt e 42

6 Troubleshooting and DEDUZZING .......uvvvriiiiiiiiieiieeieee et e e e e e e e ee e s aarr e 45
6.1  HOW TO fiNG EITOIS ..o e 45
6.2 Highlight EXECULION ceeveeeieiieiiie e e e e e e e e e e e e e e s e s enanes 45
5.3 PrODES .. e e e 46
B.4  BrEaKPOINTS . uuuuiiiiiiiiieeiieieeeeeeeeeeeeeiee st reereeeeeeeeeeeeeseessesssassraararreaeeeaaaaeeeeesenaannanes a7
6.5 Step into/over/out debUBEING ........coocviiiiiiie et 48
EXEICISES ettt e 49

Tutorial: An Introduction to LabVIEW



v Table of Contents

7 WOTKING WIth DAta.....uuvviiieeeiiiiiiieeiee ettt e e e e e s e e s e reeeeeeeeeeeeeeeeesessnnnnnes 51
8 R A o - 13 51
7. 1.1 AULO-INUEXING oottt eee e et e e e e e e e e e e s e s eaaabrrrreerreeeeeaeaaeens 51

2 A N g - VA ¥ o Vot o ] o RN 52

28 2 O 1V (= OSSP UPR PRSP 54
20 2 R O [V =T @ ] o 1= OO URTOPROPRR 55
7.2.2  ClUSter EI@MENTS....cooiiiiiee e 56
EXEICISES ettt e 57

8 WOrKING WIth STIINES .uvvvevvieiiiiiiiiiee ettt e e e e e e s reeeeeeeaeeeeeeseesnnnnns 59
EXEICISES ettt e 61

1 I ) o do Tl o =Y o | 110V = P UPPPPPTRRRN 63
1= 20 B T o To [0 T= 8 = o oY S PP UUPPPPRR 63

1S 28 A =X o o T AV T T o = 63
9.3 Error Handling in SUBVIS ...ceeviiiiiiii ettt e e e e e e e e e e e e e s e s enanns 64

o I Y o T ol o =Y o | 11V = PP P UUPPPPRRRN 65
EXEICISES ettt e 66
10 WOrKIiNg WIith ProJECES .ottt e e e e e e e e e e eeeeens 67
0 R R o o Y [<To1 = (o] oY =Y SO PP PP UURRRUPP 67
0 A 0 T<T o [0 1Y 0 1 1= ) O PP PP PR RPN 68
EXEICISES ettt e 71
11 DESIZN TECANIGUES.....cci ettt e et e e e e e e e e e e s ee s st srrrereereeeeaaeeeens 72
11.1  FOrce Program FIOW.......coooiiiiiieeeeeeeeee et e e e e e e e e e e e e e e s neanesaeeees 72
0 A oV i Y= = =1 PP P PR RPN 73
11.3  State Programming ArChit@CtUIE . ..uueeeeeeeieeeeee e 74
11.4 Multiple Loops/Parallel programming........cccveeeeueieieiieeeeeiieeeeereeeeeeeeeeeevreeeeereee e 77

Tutorial: An Introduction to LabVIEW



vi Table of Contents

L1.5  TMPIALES ettt e et e e e e e e e e r e e e e e eeeeeeeee e e e s e nnaarrraaraaes 78
EXEICISES ettt e 80
12 USEr INTITACE ...eiiiiieeiee e s s 83
1 R VA I o o o 1= o =3 84
EXEICISES ettt e 87
S T S To ] i A oY= 3 D - 7 DO 88
G Tt R 11 1) oo 0141 = 90
EXEICISES ettt e 92
R T o /A N T SO PP 94
14.1 10 functions you need to KNOW abOoUt..........cccoeviieciiiiiiineieeeieeieeeeeee e 94
14.2  The 10 most useful ShOrt-CULS........cooviiriiiiie e 99
15  EXample APPlICAtioN ....cccooe it e e e e e e e e e e e e e s r e eees 100
16 AdditioNal EXEICISES.....eiiiieeiiietiieiie et e e 105
17 WHhAt's NEXE? ...eeiiiiiieieeeie et st e e s e e e sne e e sme e s e e s en e e s neesneeeas 110
% R |V AV - 1 1o Y= SRRSO 110
A N - o V1o V= 110
17.3  Additional RESOUICES......ccccviiiiieiiieetee ettt 110
174  EXAMPIES.cuttitiiiiiiiieieee et et e e e e e e e e e e s e e s e bbb e reereeeeaeaeeeeeesaeaneaanararrraneaees 110
17.5 Documentation........cccceiiiiiiiiiiiiiiiiiiic i 111
17.6  LABVIEW WIKI .ottt 112
17.7  LabVIEW 0N YOUTUDE ....ooeiiiieeeeee e 112
QUICK REFEIENCE ... . sare e nanees 113

Tutorial: An Introduction to LabVIEW



1Introduction

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from National
Instruments. The graphical language is named "G". Originally released for the Apple
Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and
industrial automation on a variety of platforms including Microsoft Windows, various flavors
of UNIX, Linux, and Mac OS X. The latest version of LabVIEW is version LabVIEW 2011. Visit
National Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”.
LabVIEW offers lots of additional Add-Ons and Toolkits.

1.1 Dataflow Programming

The programming language used in LabVIEW, also referred to as G, is a dataflow
programming language. Execution is determined by the structure of a graphical block
diagram (the LV-source code) on which the programmer connects different function-nodes
by drawing wires. These wires propagate variables and any node can execute as soon as all
its input data become available. Since this might be the case for multiple nodes
simultaneously, G is inherently capable of parallel execution. Multi-processing and
multi-threading hardware is automatically exploited by the built-in scheduler, which
multiplexes multiple OS threads over the nodes ready for execution.

1.2 Graphical Programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel, and a connector panel. The last is used to
represent the VI in the block diagrams of other, calling Vis. Controls and indicators on the
front panel allow an operator to input data into or extract data from a running virtual
instrument. However, the front panel can also serve as a programmatic interface. Thus a
virtual instrument can either be run as a program, with the front panel serving as a user
interface, or, when dropped as a node onto the block diagram, the front panel defines the
inputs and outputs for the given node through the connector pane. This implies each VI can
be easily tested before being embedded as a subroutine into a larger program.



2 Introduction

The graphical approach also allows non-programmers to build programs simply by dragging
and dropping virtual representations of lab equipment with which they are already familiar.
The LabVIEW programming environment, with the included examples and the
documentation, makes it simple to create small applications. This is a benefit on one side,
but there is also a certain danger of underestimating the expertise needed for good quality
"G" programming. For complex algorithms or large-scale code, it is important that the
programmer possess an extensive knowledge of the special LabVIEW syntax and the
topology of its memory management. The most advanced LabVIEW development systems
offer the possibility of building stand-alone applications. Furthermore, it is possible to create
distributed applications, which communicate by a client/server scheme, and are therefore
easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for
accessing instrumentation hardware. Drivers and abstraction layers for many different types
of instruments and buses are included or are available for inclusion. These present
themselves as graphical nodes. The abstraction layers offer standard software interfaces to
communicate with hardware devices. The provided driver interfaces save program
development time. The sales pitch of National Instruments is, therefore, that even people
with limited coding experience can write programs and deploy test solutions in a reduced
time frame when compared to more conventional or competing systems. A new hardware
driver topology (DAQmxBase), which consists mainly of G-coded components with only a
few register calls through NI Measurement Hardware DDK (Driver Development Kit)
functions, provides platform independent hardware access to numerous data acquisition
and instrumentation devices. The DAQmxBase driver is available for LabVIEW on Windows,
Mac OS X and Linux platforms.

This document introducing the following themes:

¢ Start using LabVIEW
o The LabVIEW Environment
o Front Panel and Block Diagram
o Palettes: Control Palette, Functions Palette, Tools Palette
o Data Types
o Property Nodes
* SubVis
* Loops and Structures
* Troubleshooting and Debugging

Tutorial: An Introduction to LabVIEW



3 Introduction

*  Working with Data
o Arrays
= Array Functions
o Cluster
*  Working with Strings
* Error Handling
* Working with Projects using Project Explorer
* Design Techniques
o Shift Register
o State Machine
o Multiple Loops
* User Interface
* Plotting Data
¢ Deployment: Building Executable Applications (.exe)
* Introduction to Add Ons and Toolkits
o Briefly explanations...
o More detail about Control and Simulation Toolkit in later chapter
* Introduction to DAQ - Data Acquisition
o MAX — Measurement and Automation Explorer
o NI-DAQmMx
* Quick Reference with Keyboard Short-cuts

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

Tutorial: An Introduction to LabVIEW



2Start using LabVIEW

This chapter explains the basic concepts in LabVIEW.
The topics are as follows:

* The LabVIEW Environment

* Front Panel and Block Diagram

* Palettes: Control Palette, Functions Palette, Tools Palette
¢ Data Types

* Property Nodes

2.1 The LabVIEW Environment

LabVIEW programs are called Virtual Instruments, or VlIs, because their appearance and
operation imitate physical instruments, such as oscilloscopes and multimeters. LabVIEW
contains a comprehensive set of tools for acquiring analyzing, displaying, and storing data, as
well as tools to help you troubleshoot your code.

When opening LabVIEW, you first come to the “Getting Started” window.
3 LabVIEW - ol El

File Operate Tools Help

B LabVIEW .

D} Create Project ‘ D) Open Existing. |

Show | Al v | +

Blank Project H|  Lottery lvproj

C:\Work\Development\Code\Examples\Database Example\Databas!
C:A\LabVIEW\Visual Studio Online\Database Example\Database Exam
Water Tank lvproj

Check Number Entry.vi
C:\Work\Development\TFS\Development\LabVIEW"\Lottery\Lottery. \1 h
Play Lottery.vi

Lottery2.vi

Check Lottery Ticket.vi

» | Find Drivers and Add-ons »/| Community and Support >/ Welcome to LabVIEW
Connect to devices and expand the - Participate in the discussion forums or " Leamto use LabVIEW and upgrade
functionality of LabVIEW. request technical support. from previous versions.

'j) LabVIEW News | February Featured Case Study: Developing a Vitual Personal Trainer With LabVIEW




5 Start using LabVIEW

In order to create a new VI, select “Blank VI” or in order to create a new LabVIEW project,
select “Empty project”.

When you open a blank VI, an untitled front panel window appears. This window displays
the front panel and is one of the two LabVIEW windows you use to build a VI. The other
window contains the block diagram. The sections below describe the front panel and the
block diagram.

2.2 Front Panel

When you have created a new VI or selected an existing VI, the Front Panel and the Block
Diagram for that specific VI will appear.

2 Untitled 1 Front Panel *

File Edit View Project Operate Tools Window Help

l_l& |Q||_! l 13pt Application Font |'!|£!|-I];‘|_! I_! -

Ea 0 I T

In LabVIEW, you build a user interface, or front panel, with controls and indicators. Controls
are knobs, push buttons, dials, and other input devices. Indicators are graphs, LEDs, and
other displays.

You build the front panel with controls and indicators, which are the interactive input and
output terminals of the VI, respectively. Controls are knobs, push buttons, dials, and other
input devices. Indicators are graphs, LEDs, and other displays. Controls simulate instrument

Tutorial: An Introduction to LabVIEW



6 Start using LabVIEW

input devices and supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

E.g., a “Numeric” can either be a “Numeric Control” or a “Numeric Indicator”, as seen below.

w U

izl fiz3]

eric Control Numeric Indic...

| you select a “Numeric Control”, it can easy be changed to an “Numeric Indicator” by right
click on the object an select “Change to Indicator”

Change to Indicator

Description and Tip...

Create

Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Representation
Data Entry...
Display Format...

Properties

Or opposite, | you select a “Numeric Indicator”, it can easy be changed to an “Numeric
Control” by right click on the object an select “Change to Control”

Tutorial: An Introduction to LabVIEW



7 Start using LabVIEW

Visible Items

Change to Control

Description and Tip...

Create

Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Adapt To Source
Representation
Display Format...

Properties

The difference between a “Numeric Control” and a “Numeric Indicator” is that for a
“Numeric Control” you may enter a value, while the “Numeric Indicator” is read-only, i.e.,
you may only read the value, not change it.

The appearance is also slightly different, the “Numeric Control” has an increment and an
decrement button in front, while the “Numeric Indicator” has a darker background color in
order to indicate that its read-only.

2.3 Block Diagram

After you build the user interface, you add code using Vs and structures to control the front
panel objects. The block diagram contains this code. In some ways, the block diagram
resembles a flowchart.

Tutorial: An Introduction to LabVIEW



8 Start using LabVIEW

P Untitled 1 Block Diagram *

File Edit View Project Operate Tools Window Help
o> |(§}| |j©j|@ |I.Q|l5"oj} | 13pt Application Font |~ ” ;,;,v| '.'f.v' |C§7v| 1
A
jNumericl q
i 7
b/
< 2

After you build the front panel, you add code using graphical representations of functions to
control the front panel objects. The block diagram contains this graphical source code. Front
panel objects appear as terminals, on the block diagram. Block diagram objects include
terminals, subViIs, functions, constants, structures, and wires, which transfer data among
other block diagram objects.

The Figure below shows a front panel and its corresponding block diagram with front panel
and block diagram components.

Tutorial: An Introduction to LabVIEW



9 Start using LabVIEW

E> Using Temperature.vi Front Panel *

File Edit Operate Tools Browse Window Help

TEMF
CRE @EH 13pt Application Font Vll§p‘||ﬁv”mv.i_' @
E

"r‘:n‘\bmba of Measurements T';“ (s:'c; B @

oz -
A z.n_( ' 8.0
~

0.0 10.0

® ® O

®
®

P Temperatire Graph Temp Plot [ |
90.0-

S

&
'?
®

®
Y
Fahrenheit
g

L4 | o[
> Using Temperature.vi Block Diagram *
File Edt Operate Tools Browse Window Help TEHE
@[] [@] [oal@] or [ 130t Appication Fore |+ [5~ |[a] [£5] 1
A
Mumber of Measurements
13,
G p iz N 7 ®
I3
i> /[ Temperature Graph
| |
Delay (sec) E%‘ oE - @
@ > ;;..A{b b L @
= &
@ {1000.00 7 @
® b 5@
¢ o[

The different components are as follows:

Toolbar

Owned Label

Numeric Control

Free Label

Numeric Control Terminal
Knob Terminal

Numeric Constant
Multiply Function

© 0 NOU A ®WN e

. lcon
10. Knob Control

Tutorial: An Introduction to LabVIEW



10 Start using LabVIEW

11. Plot Legend

12. XY Graph

13. Wire Data Path
14. XY Graph Terminal
15. Bundle Function
16. SubVI

17. For Loop Structure

2.4 Controls Palette

The Controls and Functions palettes contain sub palettes of objects you can use to create a
VI. When you click a sub palette icon, the entire palette changes to the sub palette you
selected. To use an object on the palettes, click the object and place it on the front panel or
block diagram. The Controls palette is available only on the front panel. The Controls palette
contains the controls and indicators you use to build the front panel.

Controls
Q, search | 2 view~
| ¥ Modern
» »
I= do
Mumeric Boolean
: :
[z] [21] SE22
Array, Matrix...  List & Table Graph
= Ld » »
(3 =,
d' Enuml @
Ring & Enum Containers IjO
@ » o P O A}
O o0
Refnum Variant & Class  Decorations
| » System
| » Classic
| » Express
| » Control Design & Simulation
| > .MET & Activex
| » signal Processing
| » addons
| » User Controls
| Select a Contral...

Tutorial: An Introduction to LabVIEW



11 Start using LabVIEW

The most used Sub Palettes are the Numeric Sub Palette, the Boolean Sub Palette and the
String & Path Sub Palette.

You may change the appearance and the contents of the Controls palette:

You may Pin the palette, so it is always visible, just click the little pin button 1 in the
upper left corner of the palette:

X1 Controls Q Search‘]

If you want to change the content and appearance of the palette, click the “View” button.

i Q Search ! o g ™ ! |

Here you may change the way the palette should look.

Controls

'~ Modern Yiew This Palette As Category (Standard)
. : # Cateqory (Icons and Text)
4 Sort Alphabetically
E@ Icons
Change Visible Categories... Icons and Text
Mumeric onti Text
Tilz] » ptions...
Tree
=
1] fi | [ | ‘
Arrav. Matrix... List.Table &T... Graoh

If you click “Change Visible Categories...” you may change which Categories you want to have
visible.

Tutorial: An Introduction to LabVIEW



12 Start using LabVIEW

) Change Visible Categories

Modern
System
Classic [ Deselect Al ]
Express

Control Design & Simulation
JNET & ActiveX

Signal Processing

Addons

User Controls

Select a Contral...

DSC Module

RF Communications

Sound & Yibration

Vision

|2

[ Select Al ]

v

[ QK ][ Cancel ][ Help ]

2.4.1 Numeric Sub Palette

“Numerical Control” and “Numerical Indicator” are the most used objects in the numeric sub
palette.

Q search | & view~

3 fi23] ""‘la:oo lm
A2 23] Hiror 11707

Mumeric Control Numeric Indic... Time Stamp C... Time Stamp L...

10-' 10" E
5- 5- -
0- o-B 3

Vertical Fill Slide  Vertical Point... Vertical Progr... Yertical Grad...

- - -
o i R - —
Horizontal Fill ... Horizontal Poi... Horizontal Pr... Horizontal Gr...
8
4 o
= "3
— 4 z\J
Dial Gauge

100~
50
0-

Thermometer  Horizontal Scr... Vertical Scroll...

Framed Color...

Tutorial: An Introduction to LabVIEW



13 Start using LabVIEW

2.4.2 Boolean Sub Palette

This palette has lots of different buttons you may use. OK, Cancel and Stop buttons are

useful.

Boolean

=T = 8]

Push Button Racker Vert Rocker
o » 4

Round LED  Horizontal To... Yertical Toggl...
aa > Q

Square LED Slide Switch  Vertical Slide ...

OK Button Cancel Button Stop Button

@
<

Radio Buttons

2.4.3 String & Path Sub Palette

In the String and Path palette we have String Controls, Combo Box, etc.

String & Path

String Indicator  Combo Box

String Control
.quh_§ IPaﬂlj

File Path Con... File Path Indi...

2.5 Function Palette

Tutorial: An Introduction to LabVIEW



14

Start using LabVIEW

The Functions palette is available only on the block diagram. The Functions palette contains
the VIs and functions you use to build the block diagram.

Q& Search | & view~

v

Synchronization Graphics & So...

Vv vV vV vV vV vV vV vV vV VvV v v wy

Programming
1 k11[2]
(0] Ban
Structures Array
¥ r]
[&=
Mumetric Boolean
%0
Comparison Timing
= i i
[ 1] e
File 1fO Waveform
|2 4
fo L2
s J

Measurement IjO
Instrument IjO
Yision and Motion
Mathematics

Signal Processing
Data Communication
Connectivity

Control Design & Simulation
SignalExpress
Express

Addons

Favorites

User Libraries

Select a vI...
Statechart

»
2y

Cluster, Class...

Application C...

iy

Report Gener...

2.6 Tools Palette

You can create, modify, and debug VIs using the tools located on the floating Tools palette.
The Tools palette is available on both the front panel and the block diagram. A tool is a
special operating mode of the mouse cursor. The cursor corresponds to the icon of the tool
selected in the Tools palette. Use the tools to operate and modify front panel and block

diagram obijects.

Tutorial: An Introduction to LabVIEW



15 Start using LabVIEW

= |
G

5=
| &
e

The Tools palette is available from the View menu:

ciki<M

#) Untitled 1 Front Panel
File Edit Project Operate Tools Window Help
E Controls Palette

Tools Palette
Quick Drop Ctrl+Space

Breakpoint Manager
Probe Watch Window
Error List Chrl+L

B
4

VI Hierarchy
LabVIEW Class Hierarchy

- If you make sure “Automatic wiring” is disabled (I recommend you do so!) you may use
the Tab key on your keyboard in order to switch between the most common tools.

The most used tools are:

T

the text within a control. The Operating tool changes to the icon shown at left when it

’T Use the Operating tool, shown at left, to change the values of a control or select

moves over a text control, such as a numeric or string control.

R

Use the Positioning tool, shown at left, to select, move, or resize objects. The

Positioning tool changes to resizing handles when it moves over the edge of a resizable
object.

’E Use the Labeling tool, shown at left, to edit text and create free labels. The

Labeling tool changes to the following icon ’E when you create free labels.

Use the Wiring tool, shown at left, to wire objects together on the block diagram.

Tutorial: An Introduction to LabVIEW



16 Start using LabVIEW

2.7 Wiring

In order to create the logical flow between the object on the Block Diagram, you need to use
the Wiring tool in order to connect the different objects together.

@ Use the Wiring tool to wire objects together on the block diagram.

Available Keyboard Shortcuts when dealing with Wiring:

Ctrl-B Removes all broken wires.

Esc, right-click, or While wiring, cancels a wire you
click terminal started.

Single-click wire Selects one segment.
Double-click wire Selects a branch.

Triple-click wire Selects entire wire.

A While wiring, disables automatic

wire routing temporarily.

While wiring, tacks down wire

Double-click without connecting it.
While wiring, switches the direction
spacebar of a wire between horizontal and
vertical.
spacebar While moving objects, toggles

automatic wiring.

Ctrl-click input on function  Switches the two input wires.
with two inputs

—_— While wiring, undoes last point
Shift-click where you set a wire.

= Ctrl-B is very useful. This short-cut removes all broken wires on the Block Diagram.

2.8 Toolbar

Below we see the LabVIEW Toolbar:

|d> I@I |Cj||E| | 13pt Application Font |~ {3+ |

][]

Tutorial: An Introduction to LabVIEW



17 Start using LabVIEW

The behaviors of the different buttons are as follows:

@ Click the Run button to run a VI. LabVIEW compiles the VI, if necessary. You can run a VI
if the Run button appears as a solid white arrow. The solid white arrow, shown above, also
indicates you can use the VI as a subV!I if you create a connector pane for the VI.

E While the VI runs, the Run button appears as shown at left if the VIl is a top-level VI,
meaning it has no callers and therefore is not a subVI.

|§| If the VI that is running is a subVI, the Run button appears as shown at left.

@ The Run button appears broken, shown at left, when the VI you are creating or editing
contains errors. If the Run button still appears broken after you nish wiring the block
diagram, the VI is broken and cannot run. Click this button to display the Error list window,
which lists all errors and warnings.

@ Click the Run Continuously button, shown at left, to run the VI until you abort or pause
execution. You also can click the button again to disable continuous running.

@ While the VI runs, the Abort Execution button, shown at left, appears. Click this button
to stop the VI immediately if there is no other way to stop the VI. If more than one running
top-level VI uses the VI, the button is dimmed.

Note: Avoid using the Abort Execution button to stop a VI. Either let the VI complete its data
ow or design a method to stop the VI programmatically. By doing so, the VI is at a known
state. For example, place a button on the front panel that stops the VI when you click it.

@ Click the Pause button, shown at left, to pause a running VI. When you click the Pause
button, LabVIEW highlights on the block diagram the location where you paused execution,
and the Pause button appears red. Click the button again to continue running the VI.

2.9 Execution

In addition to the Toolbar buttons above the following Keyboard Shortcuts are available
when dealing with Execution:

Tutorial: An Introduction to LabVIEW



18 Start using LabVIEW

Ctrl-R Runs the VI.

Ctrl-.* Stops the VI.

Ctrl-M Changes to run or edit mode.
Ctrl-Run button Recompiles the current VI.

Ctrl-Shift-Run button  Recompiles all Vls in memory.

Ctrl-4t Moves key focus inside an array or cluster.
Ctrl-t Moves key focus outside an array or cluster.
Tab! Navigates the controls or indicators

according to tabbing order.

. Navigates backward through the controls
_Tabt
Shift-Tab or indicators.

T While the VI is running

2.10 The Objects short-cut menu

The most often-used menu is the object shortcut menu. All LabVIEW objects and empty
space on the front panel and block diagram have associated shortcut menus. Use the
shortcut menu items to change the look or behavior of front panel and block diagram
objects. To access the shortcut menu, right-click the object, front panel, or block diagram.

The Numeric control has the following short-cut/right-click menu:

Visible Items
Find Terminal
Change to Indicator

Description and Tip...

Create
Replace

Data Operations
Advanced

Fit Control to Pane
Scale Object with Pane

Representation
Data Entry...
Display Format...

Properties

Tutorial: An Introduction to LabVIEW



19 Start using LabVIEW

The short-cut menu will be different for the different controls or objects.

2.11 Dataflow Programming

LabVIEW follows a dataflow model for running Vls. A block diagram node executes when all
its inputs are available. When a node completes execution, it supplies data to its output
terminals and passes the output data to the next node in the dataflow path.

Visual Basic, C++/C#, Java, and most other text-based programming languages follow a
control flow model of program execution. In control flow, the sequential order of program
elements determines the execution order of a program.

Example: Dataflow Programming

Murnber 1
i Resulk
B
Mumber 2
7 50,00

The Example shows a block diagram that adds two numbers and then subtracts 50.00 from
the result of the addition. In this case, the block diagram executes from left to right, not
because the objects are placed in that order, but because the Subtract function cannot
execute until the Add function finishes executing and passes the data to the Subtract
function. Remember that a node executes only when data are available at all of its input
terminals, and it supplies data to its output terminals only when it finishes execution.

Example: Dataflow Programming

Murber 1 Result 1
; a5l
[ b
Mumber 2
[}
Murber 3 SH-'E - Result 2
! |> - 3
=G TH|
Mumber 4

]

Tutorial: An Introduction to LabVIEW



20 Start using LabVIEW

In this example, consider which code segment would execute first-the Add, Random
Number, or Divide function. You cannot know because inputs to the Add and Divide
functions are available at the same time, and the Random Number function has no inputs. In
a situation where one code segment must execute before another and no data dependency
exists between the functions, use other programming methods, such as error clusters, to
force the order of execution.

2.12 Help

@The Context Help window (Ctrl +H) displays basic information about LabVIEW objects
when you move the cursor over each object. The Context Help window is visible by default.
To toggle display of the Context Help window, select Help-Show Context Help, press the
Ctrl-H keys, or click the Show Context Help Window button on the toolbar.

When you move the cursor over front panel and block diagram objects, the Context Help
window displays the icon for subVls, functions, constants, controls, and indicators, with
wires attached to each terminal. When you move the cursor over dialog box options, the
Context Help window displays descriptions of those options. In the window, required
connections are bold, recommended connections are plain text, and optional connections
are dimmed or do not appear. The Figure below shows an example of the Context Help

window.
EE Context Help =]
Format (%36 new file path (Mot & Pathi, .. j‘
File path {dialog if emply) B[ all raws
nurmber af rows (all:-173 Firsk row
mark, after read {chars.)
kranspose (no:F) EOF?
Read From Spreadsheet File.vi
Reads a specified number of lines or rows From a numeric text file beginning at a
specified character offset and converts the data to a 20, single-precision array of
rumbers.
Click here for more help. -
EREE 4

Exercise: Create your first LabVIEW application (VI)

Tutorial: An Introduction to LabVIEW



21 Start using LabVIEW

Create a simple LabVIEW application (VI) with a Front Panel with some Controls and
Indicators. Create the logic by connecting the Terminals on the Block Diagram

The Front Panel could look something like this:

. Thermometer.vi Front Panel [Z|@”z|

File Edit View Project Operate Tools Window Help
‘i!g @@ 13pt Application Fant Iv! g,;v‘ ‘:ﬁv. ﬁv‘ &;v‘
o]

EBX

File Edit View Project Operate Tools Window Help

hermometer

Start the program with the Run button.

Exercise: Create a simple Calculator

Create a simple calculator that Add and Subtract 2 numbers like this:

Tutorial: An Introduction to LabVIEW



22 Start using LabVIEW

®. Calculator.vi Front Panel E“E”X\

File Edit View Project Operate Tools Window Help &

Iﬂ& @'ll! 13pt Application Font |v. ;nv. ‘.'ﬁ:vllﬁ'.

Start the program with the Run button.

Exercise: Write Data to File

Create a VI that writes data to a Text File.

Use Vis or functions from the File I/O palette

Q Search | oo view™

F]o]< [=]
' [
2]

‘Write Spread... Read Spread... Wi

e
=\
=

te Meas File Read Meas File
= 0 %0 G %0
ik 0oy K £ 8
o @ [ran)
OpenjCreate... Close File Format Into File  Scan From File
abc abc 0101 0101

Write Text File  Read Text File ‘Write Binary File Read Binary File

(1 -

e

Build Path Strip Path File Constants  Config File VIs
& » >
o] 2
TDM Streaming Storage Zip XML

3¢/

Adv File Funcs

The program could look something like this:

Tutorial: An Introduction to LabVIEW



23 Start using LabVIEW

B Write To File.vi Front Panel M=1E3

File Edit View Project Operate Tools Window Help Ig
[
s

m | 13pt Application Font | ‘ M @

% C:\Temp!Test.txt =

This text should be saved to a File

< j TR ] 3 .

Filehame
=T
| open or create Y——
__ OpenjCreate/Replace File | Write ko Text File|  [Close File|
. : HE rror out
rror in (no error 3
String]
[abel

Exercise: Read Data from File

Create another VI that read the text file you created in the previous VI.

Tutorial: An Introduction to LabVIEW



3Sub Vs

This chapter explains the basic concepts of creating and using Sub Vls in LabVIEW.

Topics:

¢ Create New Sub VI from Scratch
* Create Sub VI from existing code
¢ Using Sub VIs

When you place a VI on the block diagram, LabVIEW considers the VI to be a subVI. When
you double-click a subVI, its front panel and block diagram appear, rather than a dialog box
in which you can configure options. The front panel includes controls and indicators. The
block diagram includes wires, front panel icons, functions, possibly subVls, and other
LabVIEW objects. The upper right corner of the front panel and block diagram displays.

Below we see an example of a bad Block Diagram. This example does not make use of the
SubVI functionality in LabVIEW at all! This makes the Block diagram hard to read and
understand. The size of the diagram is also too large! The Block Diagram should always fit
into the screen. Both the Front Panel and the Block Diagram should fit into a screen
resolution of 1024x768.

BIN bioreactors 04,0ct. 2009.vi Block Diagram

Fle Edt View Project Oper

3

K2 auto control

| o B

=
- ;
Bm B> P

T

1
fer substing 3
pise)

Manual control

24



25

Sub Vls

With use of SubVIs, the example above could turn into, e.g.:

B N Bioreactors [N Bioreactors. vi] Block Diagram

File

Edt View Project Operate Tools Window Help

BECORIE L

initialzation] Control

1 Loo;

nnnnnnnnnnnnnnnn

[DAQ Assistant-Valvel

3

[DAQ Assistant-Valve?]

[OpenjClose Valve?

ool

B

nnnnnnnnnnnnnnnn

As you can see, much of the code in the Main VI have been replaced and put into SubViIs.
The program is now more readable.

Another approach is to use a so-called State Machine principle (more about this in chapter
11 - Design Techniques ).

Available Keyboard Shortcuts when dealing with Sub Vis:

to hlock

diagram

Double-click subVI
Ctrl-double-click

Shift-drag Vl icon

Displays subVI front panel.
Displays subVI block diagram and front

subVl panel.
DragVlicontoblock Places that VI as a subVI on the block
diagram diagram.

Places that VI as a subVI on the block
diagram with constants wired for controls

diagram that have non-default values.

Ctrl-right-click block

and select Opens the front panel of that VI.

VI from palette

Tutorial: An Introduction to LabVIEW



26 Sub Vs

3.1 Create New Sub VI from Scratch

Select “Blank VI” in the “Getting Started” window when opening LabVIEW, or when LabVIEW
is already opened select File > New V” or use the short-cut Ctrl+N.

3.1.1 Input and Output SubVI Connectors

Most SubVIs will have input and output “connectors”. This is similar with functions or
methods in other programming language that have input arguments and an output/result.

In order to create connectors, Right-click on the icon in the upper right corner of the VI and
select “Show Connector”.

EEX

-..-r : .Prorties

"
A

Show Connector
—
Find &ll Instances

You may select different Patterns, i.e., how many input and output connectors you need.

Tutorial: An Introduction to LabVIEW



27 Sub Vs

B

£ VI Properties | recommend that
[ Edit Icon... you standarize on
Show Icon this pattern.

Find All Instances

Add Terminal

Remove Terminal

Rotate 90 Degrees 1.
Flip Horizontal
Flip Vertical —
Disconnect all Terminals

[
[
[

[1]

[TT
I
T
[TT
[1]

H H{1]]

0 H H R

I
1
I
|

ik

II1T
T
1
I

TTTT

TITIT
TTITT

Make sure you select a Pattern with enough connectors even if you don’t need all the
connectors at the moment. | recommend that you standardize on the pattern in the Figure
above.

Select the Wire tool and click on the wanted connector, then click on the Control or
Indicator on the Front Panel you want to connect to this connector.

You should always follow these connector rules:

¢ Upper left connector: “Reference” In
¢ Upper right connector: “Reference” Out
* Lower left connector: Error In Cluster
* Lower right connector: Error Out Cluster

Example: SubVI Connectors

See example below about these connector rules:

Tutorial: An Introduction to LabVIEW



28

Sub Vls

P Untitled 2 Block Diagram *
File Edit View Project Operate Tools Window Help

@@ [ba| @]9 [ 120t Appication Font |~ |85+~

[T

Untitled 2

error in (no error)

TCP Refnum In TCP Refrum Out
Data In Result Out
Array In f - error out

[E3 5

B! Untitled 2 Front Panel *
File Edit View Project Operate Tools Window Help

(@] & 1] o popcsionrort ][]

o

i

i

Most common VIs that exits follow these rules, see example below.

DAQmx Write.vi
auto start
task/channels in task out
~data — number of samples written p...
timeout s error out

error in

If you follow these connector rules it’s much easier to create a clean and neat code like this:

raskfchannels ini

DAQmMx Start Task.vi DAQMx Write. vi DAQmMx Stop Task.vi
|P M| | g | o
{7 DO {m

Error out

,
Srror in (no error
===k

By doing this it’s also clear how the Data flows in the program. It should always flow from

left to right.

3.1.2 Icon Editor

You should also create a suitable icon for your SubVI.

Tutorial: An Introduction to LabVIEW



29 Sub Vs

In order to open the Icon Editor, double-click on the icon in the upper right corner of your VI.

B Icon Editor E]
File Edit Tools Layers Help
Templates | Icon Text ‘ Glyphs | Layers / y;
Line 1 text | . Line 1 color O m
Line 2 text Il e 2 color oN )
Line 3 text . Line 3 color () T
Line 4 text . Line 4 color »
[N
Font [V] Center text vertically “» &
‘v Small Fonts v|
Capitalize text
Alignment Size
center v 9 =
R:0 X0
G: 0 ¥i0
' B: 0 i1 OK ] [ Cancel ] [ Help ]

Below we see a block diagram with SubVIs icon appearance created with the Icon Editor.

¢—)PDBL |

W[ "Simulation”, Default vPf™  SubVIs with your
own icons created
with the Icon Editor

cm] - 0-20cm
Low-
M Pazs
Filter

Filter time-constant TF [s]]
[DBLY

3.2 Create Sub VI from existing code

If you find out that you code is getting messy, you could consider put some code into a
SubVI.

Tutorial: An Introduction to LabVIEW



30

Sub Vs

The procedure is as follows:

Select the part of your code you
From the Edit menu, select “Cre

ik wn e

want to turn into a SubVI
ate SubV!”

LabVIEW will automatically create a SubVI for the selected code.
Clean up automatically created wires, etc.
Create a suitable icon for your SubVI

B Untitled 2 Block Diagram *

File View Project Operate Tools Window Help

Undo Move Ctrl+Z

lication Font

b =M [E | [

Cut

Copy

Paste

Remove From Project
Select Al

Chrl+x
Ctrl+C
Chrl+y

Chrl+a

Make Current Yalues Default
Reinitialize Values to Default

Import Picture to Clipboard...
Set Tabbing Order...
Ctri+B

Chrl+U ‘
Remove Breakpoints from Hierarchy
Create Subyl 2

Chrl+#
Crl+Shift+a
Ctrl+D

Remove Broken Wires
Clean Up Diagram

Enable Diagram Grid Alignment
Align Items
Distribute Items

YI Revision History. .. Chri+Y

Run-Time Menu...

Find and Replace... Ctrl+F

0

N
i ey
I ( - i> fricni] |
E.rr.az 512
[ s, ) I
/ [ v
\ 5ra_v ( 3 )
’_mﬁz )

Although this is quite easy to do this, | do not recommend that you use this functionality to

much. This is because you should create and use SubVIs from the first moment you start

creating your application and not afterwards when you find out that you have been creating

a messy code.

So you should structure and design your code with the use of SubVIs from the beginning!

3.3 Using Sub VlIs

Below we see an example of how to use SubVls in a program (Top VI or SubVls):

raskfchannels inj
1/0

Error in (no error

Error ot

(5

Tutorial: An Introduction to LabVIEW



31 Sub Vs

You may open a SubVI from the File menu, select a SubVI from the Functions palette or use
drag and drop in different ways, e.g., you may drag a VI from the File Explorer in Windows
directly into an existing VI you have already opened in LabVIEW

Exercises

Exercise: Convert Cto F VI

Create a SubVI that convert a Temperature in Celsius to a Temperature in Fahrenheit

deq C Multiply Add

deqg C deg F @ dea P

FOEL |

Create the SubViI

Create the Front Panel and the Block Diagram as shown above
Create necessary Connectors

A w N

Create a suitable icon, e.g.:

B Icon Editor; @

File Edit Tools Layers Help

Templates | Icon Text ‘ Glyphs | Layers

s
i

7 &

Line 1 text | C->|F . Line 1 color . O m

Line 2 text . Line 2 color O .

Line 3 text [ Line 3 color ¢ T
Line 4 text . Line 4 color ;“é

<
Font [¥] Center text vertically » 4

Small Fonts v
Capitalize text

a

Alignment Size
left v!| [11 2

- R: 4
gzzgg ;é [ oK J[ Cancel ][ Help ]

5. Use the SubVlin another VI
6. Run the program to see if it works

Expand the program so you can select if you want to convert from Celsius to
Fahrenheit or from Fahrenheit to Celsius

Tutorial: An Introduction to LabVIEW



32 Sub Vls

Exercise: Convert existing code into a SubVI

Convert a part of your application into a SubVI by using the Create SubVI function in
LabVIEW.

A
(D= pr;
[
E|
==
E o
= Lntited s GUBVD]
=
3
[oBLE

Tutorial: An Introduction to LabVIEW



4 Customize LabVIEW

LabVIEW has lots of possibilities for customizing the appearance and the use of the LabVIEW
environment. Select “Options...” from the Tools menu.

Eakegory) _ A New and Changed for LabVIEW 8.x
MNew and Changed for LabVYIEW 8.x
Paths New Environment Options New pages:
Front Panel A — ina f
Block Diagram nable automatic saving for recovery Source Control

Block Diagram: Cleanup
Alignment Grid
ControlsfFunctions Palettes
Source Control

() Save before a VI runs
(5) Save before a ¥I runs and periodically

B minutes

New Block Diagram Options

Block Diagram: Cleanup

Menu Shortcuts

MathScript: Search Paths
MathScript: Script Highlighting

Revision History
Menu Shortcuts

VI Server: Configuration

VI Server: Machine Access
VI Server: User Access

VI Server: Exported YIs
‘Web Server: Configuration
‘Web Server: Visible ¥Is

‘Web Server: Browser Access
Statechart

Web Services: Security

[[Juse transparent free labels
Labels snap to preset positions on terminals

Environment [ Labels locked by default
Security -
Shared Yariable Engine Default label position

[Default v

New Front Panel Options
[[] Connector pane terminals default to Required

Labels snap to preset positions on controls
[] Labels locked by default

Default label position
[Default v

Controls/Functions Palette Options
[[]sort palette items

View the complete list of New and Changed For LabYIEW 8.x

Debugging

Colors Changed Default Since LabYIEW 8.2 Security

Fonts [[Juse transparent name labels Shared Variable Engine
Printing New

VI Server: User Access

[ o

][ Cancel ][

Help

]

The default settings is not necessary the best, here are some recommendations for setting

up the LabVIEW environment.

Category: Block Diagram

33




34 Customize LabVIEW

. Options @
Category ~ Block Diagram

Mew and Changed for LabVIEW 8.x

v/|Enable automatic error handling in new YIs
::ath:p | [Z]Enable automatic error handiing in new VI
ront FPanel
Block Diagram Enable automatic error handling dialogs
Block Diagram: Cleanup [_1Enable autamatic wire routing
Alignment Grid [CJEnable auto wiring Minimum distance Maximum distance
4 32

Controls/Functions Palettes

Source Control [[Juse transparent free labels
Debugging [[JUuse transparent name labels
Colors

Labels snap to preset positions on terminals

Fonts

Printing ["] Labels locked by default

Revision History Default label position

Menu Shortcuts Default b
Environment [P DElat e e el e T —
Security . .

Shared Variable Engine
VI Server: Configuration e e

VI Server: Machine Access Place structures with Auto Grow enabled
VI Server: User Access Show red ¥s on broken wires

VI Server: Exported VIs Show dots at wire junctions

Web Server: Configuration Show tip strips over terminals

Web Server: Visible V1s Use control caption for subYI tip strips
‘Web Server: Browser Access Show subVI names when dropped

Statechart

Show constant folding of wires
Web Services: Security o 9

[[] Show constant folding of structures
Configure Express YIs immediately
Auto-insert Feedback Node in cycles

v [ OK ][ Cancel ][ Help ]

* Disable “Enable auto wiring” option. This prevents LabVIEW from automatically
connecting adjacent blocks. Although it seems useful to have auto wiring enables, it
is my experience that the auto wiring is a little annoying since it tends to draw wires
between blocks when you do not want any wire.

* Disable “Place front panel elements as icons” option. This causes LabVIEW to use
small terminal icons on the block diagram. If you, instead, activate this option, the
terminal icons are larger, with a mimic of the element as it appears at the front
panel.

Category: Controls/Functions Palettes
* Inthe Format list: select “Category (Icons and Text)”
Category: Alignment Grid

* Turn off “Show Front Panel Grid” and “Show Block Diagram Grid”

Exercises

Exercise: Customize LabVIEW

Try the different settings explained in this chapter. Turn them on and off and watch the
different.

Tutorial: An Introduction to LabVIEW



5Loops and Structures

This chapter explains the basic concepts of Loops and Structures in LabVIEW.
The topics are as follows:

* For Loop

*  While Loop

* (Case Structure

* Sequence Structure
* Event Structure

The different Loops and Structures available are located in the “Structures” sub palette in
the Functions palette on the Block Diagram.

Structures

e el

£100 - £

e

W)=
e

VAR | [LOCAL] |GLIIIB|

N
OO

5.1Loops

The most important loops are:

* For Loop
*  While Loop

35



36 Loops and Structures

These loops will be explained in detail below.

5.1.1 For Loop

A For Loop executes a sub diagram a set number of times. The Figure below shows an empty
For Loop in LabVIEW.

[

A For loop executes its sub diagram n times, where n is the value wired to the count ()
terminal. The iteration (|I|) terminal provides the current loop iteration count, which ranges
from 0 to n-1.

After you create a For Loop, you can use shift registers to pass values from one iteration to
the next. If you wire an array to a For Loop, you can read and process every element in that
array by enabling auto-indexing. You also can enable auto-indexing by configuring a For
Loop to return an array of every value generated by the loop.

You can add a conditional terminal to configure a For Loop to stop when a Boolean
condition or an error occurs. A For Loop with a conditional terminal executes until the
condition occurs or until all iterations complete, whichever happens first. To add a
conditional terminal to a For Loop, right-click the For Loop border and select Conditional
Terminal from the shortcut menu. You must wire the conditional terminal and either wire
the count terminal or auto-index an input array for the loop to execute and for the VI to run.

To convert a For Loop to a While Loop, right-click the For Loop and select Replace with While
Loop from the shortcut menu.

Example: For Loop

The following example uses a For Loop in order to create an array with 10 elements and fill it
with random numbers.

Tutorial: An Introduction to LabVIEW



37 Loops and Structures

#DBL]

umber (0 ko 1

PDBL |

Jumeric

[z 100

5.1.2 While Loop

A While loop repeats the sub diagram inside it until the conditional terminal, an input
terminal, receives a particular Boolean value. The Boolean value depends on the
continuation behavior of the While Loop. Right-click the conditional terminal and select Stop
if True or Continue if True from the shortcut menu. You also can wire an error cluster to the
conditional terminal, right-click the terminal, and select Stop on Error or Continue while
Error from the shortcut menu. The While Loop always executes at least once.

Below we see an empty While loop:

[

After you create a While Loop, you can use shift registers to pass values from one iteration
to the next. If you wire an array to a While Loop, you can read and process every element in
that array by enabling auto-indexing.

In order to convert a While Loop into a For Loop, right-click the While Loop and select
“Replace with For Loop” from the shortcut menu. To convert a While Loop into a Timed

Loop, right-click the While Loop and select “Replace with Timed Loop” from the shortcut
menu.

Example: While Loop

Tutorial: An Introduction to LabVIEW



38 Loops and Structures

This example run until either the user clicks the stop button or number of iterations is
greater than 10.

5.2 Structures

5.2.1 Case Structure

The Case Structure has one or more sub diagrams, or cases, exactly one of which executes
when the structure executes. The value wired to the selector terminal determines which
case to execute and can be Boolean, string, integer, or enumerated type. You may right-click
the structure border to add or delete cases. Use the Labeling tool to enter value(s) in the
case selector label and configure the value(s) handled by each case.

Below we see an empty Case structure:

Tutorial: An Introduction to LabVIEW



39 Loops and Structures

Below we see an example of a Case structure with 2 cases, a “True” case and a “False” case.

Depending of the Boolean input value, the Numericl and Numeric2 is either Added or
Subtracted.

AERERRSRSRERER n : [
el e

:N:'umer_icl Result
ﬂ i 3 |> POBL |
Plumeric 2 ' ‘B :

[DBI »

g

5.2.2 Sequence Structure

A Sequence structure Consists of one or more sub diagrams, or frames, that execute
sequentially. Right-click the structure border to add and delete frames or to create sequence
locals to pass data between frames. Use the Stacked Sequence structure to ensure a sub
diagram executes before or after another sub diagram.

Below we see an empty Sequence structure.

Tutorial: An Introduction to LabVIEW



40 Loops and Structures

'I:IElElElEIEIIl.‘lD[D“E]vFFIElElEIEIEl

OO0O000000000000000a00

Below we see an example where we use “Sequence Local”, i.e., we pass a value from one

oooo0o0o0o ofo..11~ oo0ooooo0o0

Result
I [ = O

LK u

000000000000 000000000 3¢

sequence to the next

Note! To take advantage of the inherent parallelism in LabVIEW, avoid overusing Sequence
structures. Sequence structures guarantee the order of execution, but prohibit parallel
operations. Another negative to using Sequence structures is that you cannot stop the
execution part way through the sequence.

5.2.3 Event Structure

An Event structure has one or more sub diagrams, or event cases, exactly one of which
executes when the structure executes. The Event structure waits until an event happens,
then executes the appropriate case to handle that event. Right-click the structure border to
add new event cases and configure which events to handle. Wire a value to the Timeout
terminal at the top left of the Event structure to specify the number of milliseconds the

Tutorial: An Introduction to LabVIEW



41 Loops and Structures

Event structure should wait for an event to occur. The default is —1, indicating never to time
out.

Below we see an example:

T["Event Handler", Default v}

rak J»Case Selector
Previous Sel C

{ Event structure l

Ja[[21"Exit": value Change v

T —

Exit

error in (no error) error out

iz

|-
e
[
)

Right-click on the border in order to Add/Edit Event Cases, see the dialog box below.

Tutorial: An Introduction to LabVIEW



42 Loops and Structures

B! Edit Events X

Events Handled for Case:

Event Specifiers

Value Change |~

| €

Warning: An event you have specified is already handled by case 2. Duplicate event
handlers are not allowed.

Event Sources Events
(=} Controls A~ = KeyUp A~
= errorin (no error) 0 = Mouse Down W
<Al Elements > = Mouse Down?
status = Mouse Enter
code = Mouse Leave
source = Mouse Move
= error out = Mouse Up
<All Elements > = Shortcut Menu Activation?
status = Shortcut Menu Selection? (App)
code = Shortcut Menu Selection {App)
source = Shortcut Menu Selection {User)
- -
v v
< | EIES | =

Lock front panel until the event case for this event completes

[ OK ] [ Cancel ] [ Help ]

Exercises

Exercise: For Loop

Create a VI with a For Loop. Create the logic to find out if a number in an array is greater
than 10. See Front Panel below:

Tutorial: An Introduction to LabVIEW



43 Loops and Structures

=T
RS EESEEY RS
™

Al L 0 A s (1

! I
-
E
ER—

s
T
PR
-
65
O

A |

Exercise: While Loop

Create a VI with a While Loop. Create the logic to find out which (the first) index in the array
that have a number greater than 30. See Front Panel below:

Al
|

¢
¢
Hxo
¢ o
¢ .
£ o
¢
¢ .
es |
¢

Exercise: Case Structure

Create a VI with a Case Structure.

Use a Case structure inside a For Loop to write the text “The Number is greater than 10” if
value is greater than 10. See Front Panel below:

Tutorial: An Introduction to LabVIEW



44 Loops and Structures

The Number is greater
than 10

Exercise: Sequence Structure

Create a VI with a Sequence Structure. See Front Panel below:

Exercise: Event Structure

Create a VI with an Event Structure. See Front Panel below:

2 Untitled 1 E’@”X’

File Edit Yiew Project Operate Tools Window Help
_
o

String

You pushed B button
|
. ]
- |
v
& — I — | [

Tutorial: An Introduction to LabVIEW



6Troubleshooting and
Debugging

This chapter explains the basic concepts of troubleshooting and debugging in LabVIEW.
Topics:

* How to find errors

* Highlight Execution

* Probes

* Breakpoints

* Step into/over/out debugging

6.1 How to find errors

@ If a VI does not run, it is a broken, or “nonexecutable”, VI. The Run button often
appears broken, shown at left, when you create or edit a VI. If it is still broken when you
finish wiring the block diagram, the VI is broken and will not run. Generally, this means that a
required input is not wired, or a wire is broken.

Click the broken Run button to display the Error list window, which lists all the errors.
Double-click an error description to display the relevant block diagram or front panel and
highlight the object that contains the error.

6.2 Highlight Execution

@ View an animation of the execution of the block diagram by clicking the Highlight
Execution button. Execution highlighting shows the flow of data on the block diagram from
one node to another using bubbles that move along the wires. Note! Execution highlighting
greatly reduces the speed at which the VI runs.

45



46 Troubleshooting and Debugging

Edit View Project Operate jow  Help
™
B[ ot
-
[CheciCheck Er-of S,

1

fuinsiini LRSS

=

6.3 Probes

@ Use the Probe tool to check intermediate values on a wire as a VI runs.

When execution pauses at a node because of single-stepping or a breakpoint, you also can
probe the wire that just executed to see the value that flowed through that wire. You also

can create a custom probe to specify which indicator you use to view the probed data. For
example, if you are viewing numeric data, you can choose to see that data in a chart within
the probe. To create a custom probe, right-click a wire and select Custom Probe-New from
the shortcut menu.

Tutorial: An Introduction to LabVIEW



47 Troubleshooting and Debugging

B! Application Template Block Diagram *

Ta["Open Front Panel” 3

cooo

Breakpoint

6.4 Breakpoints

@ Use the Breakpoint tool to place a breakpoint on a VI, node, or wire on the block
diagram and pause execution at that location. When you set a breakpoint on a wire,
execution pauses after data pass through the wire. Place a breakpoint on the block diagram
workspace to pause execution after all nodes on the block diagram execute. When a VI
pauses at a breakpoint, LabVIEW brings the block diagram to the front and uses a marquee
to highlight the node or wire that contains the breakpoint. LabVIEW highlights breakpoints
with red borders for nodes and block diagrams and red bullets for wires. When you move
the cursor over an existing breakpoint, the black area of the Breakpoint tool cursor appears
white. Use the Breakpoint tool to click an existing breakpoint to remove it.

You may also right-click on the wire in order to set a breakpoint or open the Breakpoint
Manager.

Tutorial: An Introduction to LabVIEW



48 Troubleshooting and Debugging

Clean Up Wire
0 J"“ Create Wire Branch

Delete Wire Branch

Insert 4

Application Control Palette  p

Create >

Probe

Custom Probe >

Breakpoint Set Breakpoint

Description and Tip... Breakpoint Manager
& &

Breakpoint Manager is a tool for enable, disable and delete breakpoints.

P Breakpoint Manager

Y1 Mame Ob]ect Mame State A

State Machine 1.vi _

State Machine 1.vi \Wire

E@@

£
++
AR

[ Close ] [ Help

6.5 Step into/over/out debugging

Available Keyboard Shortcuts when Debugging:

Ctrl-d Steps into node.
Ctrl-—> Steps over node.
Ctrl-d Steps out of node.

Tutorial: An Introduction to LabVIEW



49 Troubleshooting and Debugging

Exercises

Exercise: Highlight Execution

Enable “Highlight Execution” in one of your programs, and see how it works.

Exercise: Probes

Set Several Probes around in your application and watch how it works. Use the Probe watch
Window and check out the functionality this tool offers.

Also check out the “Custom Probe” and the “Find Probe” functionality.

B! Probe Watch Window

=
(<] probe oiplay
Probe(s) Value Last Update A || | Numeric
= Untitled 1 B
-
[2] Probe 49 30.10.2009 10:48:04
[3] milliseconc 1000 30.10.2009 10:48:04

£

Exercise: Breakpoints

Set some Breakpoint around in your code and check out how it works. Use the Breakpoint
Manager tool.

Example:

|100|-

Tutorial: An Introduction to LabVIEW



50 Troubleshooting and Debugging

Exercise: Step into/over/out debugging

Use the Step into/over/out functionality together with your Breakpoints and learn how you
can use them and see what the difference between them is.

B[] [@[ ][9] [25] [balR ot}

Tutorial: An Introduction to LabVIEW



7Working with Data

This chapter explains the basic concepts of creating and using Sub Vis in LabVIEW.
Topics:

* Arrays
* Array Functions
* Cluster

7.1 Arrays

Arrays are very powerful to use in LabVIEW. In all your applications you would probably use
both One-Dimensional Arrays and Two-Dimensional Arrays.

7.1.1 Auto-Indexing

LabVIEW uses a powerful mechanism called “Auto-indexing”.

For Example you may use a For loop to create Array data like this:

EH

Or you may use an Array like this in order to automatically specify number of iterations:

51



52 Working with Data

i Auto Index Input.¥i Block Diagram

File Edit Operate Tools Browse Window Help
t{)l@l @IE|I¢D|IE|'|DJ} | 13pt Application Font |v'|;mv| R
s

[
Array
I[nm | —|
n p

|~
v

7.1.2 Array Functions

LabVIEW has lots of built-in functions for manipulating arrays.

o \iew

ﬂ:

R

=t B3
Array Size Index Array  Replace Subset Insert Into Ar... Delete From ...
0+ (FF 5 B &~ E

Initialize Array Build Array

x L]
x ?:
* B{ “u

-t

Max & Min Reshape Array

R
Sort 1D Array  Search 1D Ar... Split 1D Array  Reverse 1D A... Rotate 1D Ar...

= N T R - | B

i ¥ 5 o d d-m@

Interpolate 1... Threshold 1D ... Interleave 1D... Decimate 1D ... Transpose 2D...
i[1zZ]
i

Array Constant  Array To Clus... Cluster To Ar... Array ko Matrix  Matrix to Array

The most useful Array functions are:

E‘ Array Size
‘Oﬂ
=t Index Array

Tutorial: An Introduction to LabVIEW



53 Working with Data

=+ '@ Delete from Array

=t Search 1D Array

Initialize Array

Build Array

Array Subset

m
il Array Constant

All these functions are basic (but very useful) array functions you will probably be using in all
your applications and Vils.

Example: Array functions

In this example we see how we can use these Array functions and what they do.

Ho_I[1]
Array Size kizels
4 FRnT =
B =Y
9]
Index Arra
@ Element
-t O

Delete From Array|  [array wf subset deleted
B3 i

nitislized arra

3

Build Arra Bppended arra
.l f132)

Array Subset

2]
132)
subarra
$132]

2

3
3

pearch 1D Array ndex of element
B ; La §I32]
-t

Tutorial: An Introduction to LabVIEW



54 Working with Data

The resulting Front Panel is as follows:

£
Y

i
CH
R
B
2
i
CH
R
B

Al

7.2 Cluster

Clusters group data elements of mixed types, such as a bundle of wires, as in a telephone
cable, where each wire in the cable represents a different element of the cluster. A cluster is
similar to a record or a struct in text-based programming languages. Bundling several data
elements into clusters eliminates wire clutter on the block diagram and reduces the number
of connector pane terminals that subVIs need. The connector pane has, at most, 28
terminals. If a front panel contains more than 28 controls and indicators that you want to
use programmatically, group some of them into a cluster and assign the cluster to a terminal
on the connector pane. Like an array, a cluster is either a control or an indicator. A cluster
cannot contain a mixture of controls and indicators.

Tutorial: An Introduction to LabVIEW



55 Working with Data

+{X] Controls Q search
Modern 4
> p > >
]I@ QQ
Mumeric Boolean String & Path
R LI

[:]1 9] X1 Array, Matrix & Cluster
Array, Matrix...

Cluste;

[l
EfEnum | [
Ring & Enum Array =
B [ ]
XXX XXX
XXX XXX
DEL: CDE
Refnum RealMatrix.ctl  ComplexMatri...

Classic 2] L2t

Although cluster and array elements are both ordered, you must unbundle all cluster
elements at once rather than index one element at a time. You also can use the “Unbundle
By Name” function to access specific cluster elements.

Example of a Cluster in LabVIEW:

7.2.1 Cluster Order

You may sort the different elements in the cluster by right-click on the cluster border and
select “Reorder Controls in Cluster...”

Tutorial: An Introduction to LabVIEW



56 Working with Data

b cluster.lhri

7.2.2 Cluster Elements

In order to manipulate and work with cluster LabVIEW offers lots of functions, such as the
“Bundle” and “Unbundle” functions.

G5
Visible Items >
Find Control
Hide Control

Change to Indicator
Change to Constant

Description and Tip...
Create > reomp] o ] — —
Data Operations 3 H% %il M= =Ny
Advanced > | Unbundle By ... Bundle By Name  Unbundle Bundle
. LE =] =]
Yeik s Teo 232 w2
. d 1= 4=
Fiopeities Build Cluster ... Index &Bund... Cluster To Ar... Array To Clus...
- o
-
o =

In order to write to a cluster from the code, you may use the “Bundle” function or the
“Bundle By Name” function. See example below:

Tutorial: An Introduction to LabVIEW



57 Working with Data

Example: Clusters

[Sok

Mew Command outpLt cluster
[abck I:::umm..and H - bemr]
Function

[T527 Bundle By Mame

In order to get access to the different elements in the cluster, you need to “Unbundle” by
using the “Unbundle” function or the “Unbundle By Name”. See example below:

Marne
Employed?
J—
Age
IUnbundle
fipplicant Cluster Eq
g [LE]rmmmmmmmmend Company Marne
B Compeny
b
Marne 2
Unbundle By Mame

Farne Company Name 2

: Comparry Marme e Fibe ]|

Exercises

Exercise: Arrays

Create some simple VIs where you use these array functions to manipulate array data:

&Y Array Size
”u

Index Array

=+ @| Delete from Array

=t Search 1D Array

Initialize Array

Build Array

Array Subset

Tutorial: An Introduction to LabVIEW



58 Working with Data

Exercise: Arrays

Create a SubVI that find the “peaks” in the input array regarding to an input peak level.

Peak Detector. vi | eaks
(oo — ] L

farra x
[pBL [@]

Exercise: Clusters

Create a Cluster and get the different values from the controls in the Cluster. See Front Panel
below:

e

95990077

Tutorial: An Introduction to LabVIEW



8Working with Strings

Working and manipulating with strings is an important part in LabVIEW development.

On the Front panel we have the following String controls and indicators available from the
Control palette:

String & Path

String Control  String Indicator ~ Combo Box

.Pcnh_E chfh;

File Path Con... File Path Indi...

On the Block Diagram we have the following String functions available from the Functions
palette:

@+ Q Search | oo Wiew™
g-o
o
String Length  Concatenate ... Additional Stri...
[& s [oe] [FCRE] P| 4
B e ot Ak =
nt ot L 12:01 tp
Replace Subs... Search andR... Match Pattern Match Regula... Format Datef... String/MNumbe...
B % E% & e ] o)
@ _[nnn) @
Scan From St... Format Into S... Spreadsheet ... Array To Spr... Conversion
1.3 LEC
X 0E=0 |
Build Text Trim Whitesp... TolUpper Case To Lower Case Space Constant
[l
String Constant Empty String ... Carriage Ret... Line Feed Co... Endof Line C... Tab Constant

Some of the most important String functions are:

Concatenate Strings

59



60 Working with Strings

Concatenate Strings
string 0 NS
string 1 Bas|  leeeessses concatenated string

string n-1

Concatenates input strings and 1D arrays of strings
into a single output string. For array inputs, this
function concatenates each element of the array.

This function concatenates several strings into on string:

roncatenated stringl

IThis i

Search and Replace String

Search and Replace String

input string JWWWW result string
search string ,.,,E =, ¥ number of replacements
: i { 4 l_
replace string (" E offset past replacement
offset {0) error out

error in (no error) weeeed
Replaces one or all instances of a substring with another substring. To
include the multiline? Boolean input, right-click the function and

select Regular Expression.

Use this when you want to replace or remove a certain text in a string.

:result strin

{Please remove the fish from this tring |

Match Pattern

Tutorial: An Introduction to LabVIEW



61 Working with Strings

Match Pattern

before substring
match substring
after substring
offset past match

string

regular expression -k
offset (0} —

Searches for regular expression in string beginning at
offset, and if it finds a match, splits string into three
substrings. A regular expression requires a specific combination
of characters for pattern matching. For more information about
special characters in reqular expressions, refer to the regular
expression input description in the detailed help.

This is the most useful function when it comes to string manipulation.

pefore substring

i

{This is a long string f~~~~{EE3 3

"'13‘

[efter substring

Format Into String

Format Into String

format string

initial string % B resulting string
error in {no error) =4 L_o !l B grror out
input 1 {0) — —r P
input n {0)

Formats string path, enumerated type, time stamp,
Boolean, or numeric data as text.

Example:
IMy Mame is %s. My phone is %s
Exercises

Here are some exercises using some of the String functions that are available in LabVIEW.

Exercise: SubVIl: Remove leading zeros in string.vi

Tutorial: An Introduction to LabVIEW



62 Working with Strings

Create a SubVI which removes leading zeros in a string. Create a Test VI that uses the SubVI.

Exercise: SubVI: Remove space from end of string.vi

Create a SubVI which removes all spaces from the end of the string. Create a Test VI that
uses the SubVI.

Exercise: SubVI: Add 2 String.vi

Create a SubVI which adds 2 strings into one. Create a Test VI that uses the SubVI.

Tutorial: An Introduction to LabVIEW



9Error Handling

This chapter explains the basic concepts of handle errors in your code.
Topics:

* Finding Errors
* Error Wiring
* Error Handling

9.1 Finding Error

@If a Vl does not run, it is a broken, or “nonexecutable”, VI. The Run button often appears
broken, shown at left, when you create or edit a VI. If it is still broken when you finish wiring
the block diagram, the VI is broken and will not run. Generally, this means that a required
input is not wired, or a wire is broken. Click the broken Run button to display the Error list
window, which lists all the errors. Double-click an error description to display the relevant
block diagram or front panel and highlight the object that contains the error.

9.2 Error Wiring

Error handling is important in all programming languages. LabVIEW has powerful mechanism
for handling errors and error wiring.

You should always wire the Error cluster between all SubVls, nodes, etc. that support this,
see example below.

raskfchannels inj

DAQmx Start Task.vi DAQMX Write.vi DAQmx Stop Task. vi
Error in (no error > T
E s DO {5 boat]

[Ssch

The Error cluster is located in the Controls palette here:

63



64 Error Handling

Mumeric Boolean String & Path

[ | B 14

[:1 (] <1 Array, Matrix & Cluster

Array, Matrix... Error In 3D.ctl

el e =
EfEnum ] 2 o -
Ring & Enum Array Cluster
il
Refnum
'System
Classic
Express Error In 3D.ctl  Error OQut 3D.ct

The Error Cluster:

errar in {no error)
code

|*

The Error cluster contains of the following parts:

e Status — True/False. False: No Error, True: Error
* Code—Error Code
* Source — Textual Error message

9.3 Error Handling in SubViIs

When creating SubVIs you should always create an Error In and an Error Out. In the SubVI
code you should also use a Case structure and wire the Error in cluster to the Case Selector

as shown below.

Tutorial: An Introduction to LabVIEW



65 Error Handling

fa[rio Error vl

Create your code in the No

Error Case
WEror®™  ~p]

Pass the Error to the next part
of the code, next SubVI, etc.

9.4 Error Handling

LabVIEW has several useful SubVls, etc for Error Handling:

Tutorial: An Introduction to LabVIEW



66

Error Handling

Strng

E’P

A

Dialog & User...

%z

Application C...

BT

DS

. Report Gener...

These are:

Simple Error Handler.vil

Merge Errors.vi
1

) '\'.\I
A"

(& Dialog & User Interface

One Btn Dialog  Two Btn Dialog

NIC
Three Btn Dlg

&

£

=)

Simple Error ... General Error...  Clear Errors
a1
Sy, F N, 20
A" A" 21711
Merge Errors  Error Cluster ...  Find First Error

Il

Prompt User

'l

Display Msq

General Error Handler . vi

Clear Errors.vi

4

?

Error Cluster From Error Code.vil

Find First Error.vil

#\')I
nA”

12!
S
NAN

In general you should always show the error to the user. See LabVIEW Help for more details

of how to use these SubViIs.

Exercises

Exercise: Error Handling

Check out the different Error Vis in LabVIEW. Use them in some of your previous Vis.

Tutorial: An Introduction to LabVIEW



10 Working with Projects

This chapter explains the basic concepts of the project Explorer in LabVIEW.
Topics:

* Project Explorer
* Building .exe (executable) applications
¢ Deployment: Create an Installer

10.1 Project Explorer

It is not necessary to use the Project Explorer when developing your LabVIEW code, but it is
an easy way to structure your code, especially for larger projects.

P! Project Explorer - N Bioreactors. lvproj D@

File Edit View Project Operate Tools Window Help

DS X DO X6 (E]E

Items ] Files |

|

=] [k}, Project: M Bioreactors.lvproj
= B My Computer

= [J Subvls

- |m, Parse Serial String.vi
- |, Read Serial Port.vi
- |m Serial Configuration1.vi
.. [, Serial Configuration2.vi
- [, Show Data.vi
- [m, timeconstant_lowpass_filter vi
- jml, Valve Auto Control.vi
= [J MainvI
# %' Dependencies
- Build Specifications

The project Explorer is necessary when you want to deploy your code into, e.g., an
executable (.exe) application, build a setup, etc.

67



68 Working with Projects

The Project Explorer is also very useful when you integrate a source control tool, such as
Team Foundation Server, Visual Source Safe, etc. Then you may easily check files in and out
of the source code system.

In order to create a new Project in LabVIEW, simply select “Empty Project” from the Getting
Started window when you open LabVIEW.

- e \ arted u

File Operate Tools Help

& LabVIEW Q|

Licensed for Professional Yersion

New Latest from ni.com

] News

?igy Empty Project * Technical Content

4 = Examples
9 More...
Training Resources
o Online Support
pen

Discussion Forums
@, C:...\5CADA Lab\scada_lab.lvproj

&) C:\...\Group 615CADA_LAB.Ivproj Codeshang
KnowledgeBase
) Task1z_0.vi Request Support
[l TASK13_sim.vi Help
j .
] Task?.vi Getting Started with LabVIEW
Eﬁ. State_estimation_15_S.vi
_ LabVIEW Help
|9 Browse...
List of All New Features
Targets Q Find Examples...
lReal—Time Project v ‘ [ Go ]

Q Find Instrument Drivers. ..

10.2 Deployment

When your application is finished, you may want to distribute or deploy your application and
share it with others.

The Project Explorer gives you several choices when it comes to distribute and deploy your
application. Some of the options are:

* Create an executable application (.exe) — this means that the target doesn’t need to
have LabVIEW installed on their computer. All the target need is LabVIEW Run-Rime,
which is a small installation package.

Tutorial: An Introduction to LabVIEW



69 Working with Projects

* You may create your own installer, so all the target need is to run a setup.exe in

order to use your application
* Other possibilities is to create a Web Service or a Shared Library (DLL) of your

application

All these options are available from the Project Explorer, just right-click on your “Build

Specifications” node.

B Project Explorer - N Bioreactors. lvproj

File Edit VYiew Project Operate Tools Window Help
c1=1: 1k IELTER Y]

Items | Files

= [T_g,l Project: N Bioreactors.lvproj
= B My Computer

# [ Subvis

= [ MainyI

. L md N Bioreactors.vi

@ %5 Dependencies

oo e [ applcaton &0) |
Installer

e Shared Library (DLL)

Source Distribution
\Web Service (RESTFul)
Zip File

We will go through how we create an executable application. Click Build
Specifications>New—->Application (EXE).

In the Properties window fill in your name of the application.

Tutorial: An Introduction to LabVIEW



70 Working with Projects

P Biorector Properties @
Information

Source Files ’ o

Destinations Build specification name:

Source File Settings [Biorector ]
Icon

Advanced arget filename

Additional Exclusions IBiorector.exe } l
WVersion Information

Run-Time Languages Destination directory

Preview

M:\Work) TrainingiLabVIEW Training|Introduction to LabYIEW\Code\ExamplesiN Bioreactors Project\Deployment

Build specification description

[ Build ] [ OK ] [ Cancel ] [ Help

Make sure you select a Startup VI.

P Biorector Properties E]

Category Source Files
Information
[ Source Files] S
ti Project Files Startup VIs ~
Source File Settings EE =] 1 Bioreactors.vi
Icon @) Subvls
Advanced ={J) Mainv /
Additional Exclusions @ N s
Version Information N ‘gl
Run-Time Languages )
Preview ‘:l
™
Always Included ~
(=]
le]
p]
[ Build ] [ oK ] [ Cancel ] [ Help ]

There are lots of properties and setting you may use in order to create your application, go
through all the Categories in the Properties window.

When you have finished all the steps, just select “Build” in order to create your application.

When you make changes in your application, it is easy to rebuild your application:

Tutorial: An Introduction to LabVIEW



71 Working with Projects

= @» Project: N Bioreactors.lvproj
= & My Computer
# [ Subvls
& [ MainvI
. L jmd N Bioreactors.vi
—’Wgﬁ’ Dependencies
= ‘% Build Specifications

Run
Duplicate
Explore

Remaove from Project

Properties

Exercises

Exercise: Project Explorer

Create a new Project and put on of your existing application into the project

Exercise: Deployment

Create an executable application

Tutorial: An Introduction to LabVIEW



11 Design Techniques

This chapter explains some useful techniques to use when creating your application.
Topics:

* Force the Program Flow using an Error cluster
¢ Shift Register

* State Machine

* Multiple Loops

* Templates

11.1 Force Program Flow

As mentioned earlier, LabVIEW follows a dataflow model for running Vis. A block diagram
node executes when all its inputs are available. When a node completes execution, it
supplies data to its output terminals and passes the output data to the next node in the
dataflow path.

In the example below we cannot be sure that the DAQmx Write.vi executes before the
DAQmx Stop Task.vi executes. LabVIEW will in this case randomly execute one of these first.
If the Stop VI happens to execute first then the Write VI will failed because task has been
stopped.

askjchannels in 2 DA -
mx Start Task.vi
:

DAQMx Write.vi

DAGmx

AnalogDBL

1Chan 15amp Which VI will execute

first?

In the example below we wire the Error cluster through all the Vis, and there will be no
doubt that the Write VI will execute before the Stop VI.

72



73 Design Techniques

askfchannels in
1/0 DAQMx Start Task. vi DAQMx Write,vi
Error in
e DN

Analog DBL
i 1Chan 15amp

error out
e M vt yoat)

This approach will also take care of the error handling in your program, which is very
important in real-world applications.

11.2 Shift Register

Use shift registers on For Loops and While Loops to transfer values from one loop iteration
to the next. Shift registers are similar to static variables in text-based programming
languages. A shift register appears as a pair of terminals, directly opposite each other on the
vertical sides of the loop border. The right terminal contains an up arrow and stores data on
the completion of an iteration. LabVIEW transfers the data connected to the right side of the
register to the next iteration. Create a shift register by right-clicking the left or right border
of a loop and selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the data type of the
first object wired to the shift register. The data you wire to the terminals of each shift
register must be the same type.

To initialize a shift register, wire any value from outside the loop to the left terminal. If you
do not initialize the shift register, the loop uses the value written to the shift register when
the loop last executed or the default value for the data type if the loop has never executed.

Use a loop with an uninitialized shift register to run a VI repeatedly so that each time the VI
runs, the initial output of the shift register is the last value from the previous execution. Use
an uninitialized shift register to preserve state information between subsequent executions
of a VI. After the loop executes, the last value stored in the shift register remains at the right
terminal. If you wire the right terminal outside the loop, the wire transfers the last value
stored in the shift register. You can add more than one shift register to a loop. If you have
multiple operations within a loop, use multiple shift registers to store the data values from
those different processes in the structure.

Tutorial: An Introduction to LabVIEW



74 Design Techniques

= o
4

11.3 State Programming Architecture

Creating VIs using the State Machine approach is very useful when creating (large)
applications.

In general, a state machine is a model of behavior composed of a finite number of states,
transitions between those states, and actions. It is similar to a "flow graph" where we can
inspect the way in which the logic runs when certain conditions are met.

state—____

transition—___

close_door open_door

/

transition condition

2
Closed

E: close door
entry action

Sometimes, you may want to change the order of the sequence, repeat one item in the
sequence more often than the other items, stop a sequence immediately, or have items in
the sequence that may execute only when certain conditions are met. Although your
program may not have any such requirements, there is always the possibility that the
program must be modified in the future. Therefore, a state programming architecture is a
good choice, even if a sequential programming structure is sufficient. The following list

Tutorial: An Introduction to LabVIEW



75 Design Techniques

describes more complex programming requirements that justify the use of a state
programming architecture for an application.

* You need to change the order of the sequence
You must repeat an item in the sequence more often than other items

You want some items in the sequence to execute only when certain conditions are
met

The State Machine approach in LabVIEW uses a Case structure inside a While loop to handle

the different states in the program, and the transitions between them. The Shift Register is
used to save data from and between the different states.

Below we see examples of a state machine principle implemented in LabVIEW.

Simple State Machine principle

Tutorial: An Introduction to LabVIEW



76 Design Techniques

| "Start", Default v

State Machine with multiple transitions depending on the State:

| "Startup" vp

|
State
Start Up.vi L%Shutdown ¥

Case Structure
Beginning State = ~
Startup ¥ s

[*1die ~]

n — W@

More advanced State Machine using Shift Registers:

Tutorial: An Introduction to LabVIEW



77 Design Techniques

B Application Template [State Machine.vi] Block Diagram

File Edt View Project Operate Tools Window Help
s
\Q\ED}B [ 130t Application Font__| ~ ||;pv| :ﬁ:v! QVI@
~
("Check Error”
e Seecor
ious Sel Case ~{
Notin Use [A]
3 Not in Use
in Use (2]
Notin Use £
Exit]
rrrrrr Bl DB
(=g =} 2 =]
[ :
h4
< >

11.4 Multiple Loops/Parallel
programming

Often, you need to program multiple tasks so that they execute at the same time. In
LabVIEW tasks can run in parallel if they do not have a data dependency between them, and
if they are not using the same shared resource. An example of a shared resource is a file, or
an instrument.

‘v/ Tasks can run in parallel [Task 11— [Resource 1]
Task i llel
‘v/ asks can run in paralle [Task 2—— [Resource 2]
Tasks cannot run in parallel Shared
are
Tasks cannot run in parallel R
)( esource

LabVIEW

Using multiple While loops is sometimes useful in applications that need to handle User
interactions in parallel with, e.g., DAQ operations, etc.

Below we see an example of how this structure could look like. The upper loop could handle
interaction with the user, while the lower loop could handle DAQ operations, such as
reading and writing to some I/O equipments.

Tutorial: An Introduction to LabVIEW



78 Design Techniques

This Loop do User Interface Interaction

fl"start”, Default vl 5
Start f =} 5 Goto Next Case i} A

M)
L
]

@

[This Loop do DAQ Operations {1/0)]

["Do Something” v
Start [~ hrmnsnanand? Goto Next Case [~

=5 vl I
! T
Iﬂ stop ||

—

In order to pass data between the loops, you may e.g. use local variables. The loop may have
different time cycles. The I/O may require faster cycles than the User interaction loop.

11.5 Templates

You should create your own templates for such VI you use a lot. It is easy to create your own
templates for scratch, just create a VI as you normally do and then save it as a template with
the ending “.vit”. You may also convert a VI you already made just by changing the extension

to “.vit”.

You should copy your templates to the LabVIEW template folder which is default located in
“C:\Program Files\National Instruments\LabVIEW X.X\Templates\”.

Tutorial: An Introduction to LabVIEW



79 Design Techniques

& My Templates

Fil Rediger Vis Favoritter Verktgy Hijelp

@ Tibake ~ () !y /j\, Sek ‘H:_‘ Mapper '

Adresse lifj C:\Programfiler\National InstrumentsiLabVIEW 2010\templatesi\My Templates

Mapper X Mavn - Stgrrelse  Type
@ ) Privat A~ = DislogVLvit 20kB  LabVIEY
# ) Program Files E5 Mainv vit 15kB LabVIEY
= [5) Programfiler @Parallellw.vit 14kB LabVIEY
& () Fellesfiler ) SimpleSuby . vit 9KE  LabVIEY
= 1) National Instruments @StateMachineEventStructureV... 19kB LabVIEY
|2 Circuit Design Suite 10.1 ) StateMachineVI. vit 1SkB LabVIEV
# () CompactRIO =} SubyIvit 16 kB  LabVIEY
# () DataSocket ) TaskvLvit 12kB  LabVIEY

| Interfaces
# () LabVIEW 8.6

The Templates will then be available from the Getting Started Window or File=>New... in
LabVIEW.

| may case | have created a sub folder called “My Templates” where | place all my templates.

Tutorial: An Introduction to LabVIEW



80

Design Techniques

Create New

Description

me], Blank VI
lg,], Polymorphic VI
=) From Template
#/C5) Control and Simulation
#{2DAQ
#/(C5) Frameworks
() Instrument 1/O (GPIE)

= My Templates

% Application Template
gg Application Template
%) Dialog

%) MainVILvit

i) ParallelivL. vit

%) SimpleSubYI.vit

i) StateMachineVI vit
i) TaskVILvit

) Simulated
#/(C5) Tutorial {Getting Started)
#{) User
=y Project
A& Empty Project
= Project from Wizard
< |

[>

Preview and
Description

|
[£

[>

:I -

@
(Lan

Use this Template when you want to create a new
Application

(<€

<

[a

[]add to project

I OK I[ Cancel ][ Help ]

Exercises

Here are some exercises about shift-registers, State Machines and parallel programming.

Exercise: Shift-register

Create a VI (see example below) where you have the following states:

* Initialize
*  Write

* Read

* Close

In the VI you will use a shift-register as a temporary storage. In the Write state you Write
Data to the storage (shift-register) while you in the Read state will read the Data from the

Storage.

See Example below:

Tutorial: An Introduction to LabVIEW



81 Design Techniques

®. Task.vi Front Panel *

File Edit View Project Operate Tools Window Help

Initialize
 Initialize
Read
Write
Close

SITOr IN LNO error )|===== Task Task : 2rror out
(===

This example shows how you can use a shift-register as a temporary storage, which is very
useful in many situations.

Exercise: State Machine

Use the State Machine principle on one of your previous exercises.

Exercise: Parallel Programming

Create a VI that consists of 2 parallel loops. Use local variables and other mechanisms in
order to share data between the 2 loops.

Exercise: Templates

Tutorial: An Introduction to LabVIEW



82 Design Techniques

Strip some of yours previous Vis and save them as reusable Templates.

Tutorial: An Introduction to LabVIEW



12 User Interface

This chapter explains the basic concepts of creating user-friendly Graphical User Interfaces
(GUI) in LabVIEW.

Topics:

* Decorations

* Tab Control
s Splitter

* Sub Panel

* Etc.

Below we see a Front Panel (GUI) with a “poor” design.

BN bioreactors 04.0ct. 2009.vi Front Panel * =69
File oject Operate Tools Window Help
[nn] [13pt Appcation Fort |~ ][ 2o~ |[7a~ ][] [€5-]

dozfdt Chart

0,00 R1 R1OZ 508  mofL R1 02 conce. e
0,00 Rz B R202 o,00 mafL. rzozconce. [

Serial interface setting

R1_Ox 340 ‘ R2_Oxi340i |
BaudRate 2 4500
Data Bits ’r) 5
Parity  olinone

StooBits AL~

Lowpass Filter
Ts }5 s
Tigo I8

02 measurment 2.

5,5E+0 ) 5,56+0 -]
SE+0-| SE+0-|
4,5640-] 4,5E+0-
4E+0-} 4E40-]
3,5E+0-] 3,5E40-
3E+0-)
2,5E+0-
2640
1,5E+0-]
1E+0-]
SE-1-]
e
0
Time [s]
HEwl |
Control Valves R1 15,08 R10zconce. [
02 Limitation miEht
R2 0,00 rzozconce. [N
02 measurment mefk
Valve 1 Valve 2 =
R1 R2
@ o
02_max1 02_max2 £ .
ManualiAuto Manualiduto 2 | - p
: s s 8 o5-
Fi1 Fv2 02_mint 02_min2
-} » Ho.s Jos o
=
Start_stop_fle_writing button | Wait 30 sec to stop program ;‘ s
8
g

The information (Controls and Indicators) on the Front Panel is not structured. You should
group elements that naturally belong together and use different colors with care.

When creating Graphical User Interfaces (GUI) you should use the controls from the System
palette and not from the Modern or Classic palettes. Modern Controls may be used in Sub
Vis with no visible User Interface (for the user).

83



84 User Interface

The appearance of the controls in the System palette is standard MS Windows look and
feeling and this look is familiar for most users. These controls also change appearance due to
changes in the appearance in the operation system.

o View ™

System Numeric  System Spin ...  System String System Ring  System Comb... System Enum

= H b &

System Path ...  System Label  System Listbox System Tree System Table
_]_ =3

T i
System Vertic... System Horiz... System Vertic... System Horiz... System Yertic... System Horiz...

Caneel ® [ »/“.’: -

System Button  System Canc... System Radio... System Chec... System Mixed... System Radio...

ds 3

System Tab C... Horizontal Scr... Vertical Scroll... Horizontal Spl... WYertical Splitt. ..

= /

System Rece... System Chisel...

FI

i

12.1 VI Properties

In order to make the appearance of the Window that hosts your application, you should
always make some changes in the “VI Properties”.

You find the “VI Properties” by right-click on the icon in the upper right corner of your VI.

Edit Icon...
Show Connector

Eﬂ
]

Find All Instances

0,00
0,00
0,00

move Termina

Add Terminal
0
Patterns »

otate 90 Deqgrees

Tutorial: An Introduction to LabVIEW



85 User Interface

P! VI Properties E]

Category ’ Window Appearance v ‘
Window title
’Air Heater ‘ [[]5ame as ¥I name
O Top-level application window [DlLatViEw AR
. File Edit Operste Tools [oor]
O Default U x
(%) Custom
I OK ] [ Cancel ] [ Help ]

The first thing you should change is the “Window title”. Here you may type appropriate
name of your application or SubVI.

The next you should do is to the “Customize” button in order to customize the Window
appearance.

B! Customize Window Appearance @

Window has title bar Window Behavior
[] Show menu bar (®) Default
[]5how vertical scroll bar* O Fioating
[¥]Hide when LabVIEW is not active
[]Show horizontal scroll bar* O Modal
*Applies only to single pane panels [[] windaw runs transparently 0%

Allow user to close window

[Jallows user to resize window ;

Allow user to minimize window

Allow default run-time shortcut menus

[]Show toolbar when running
[]Show Abort button
Show Run button

[[]5how Run Continuously button

[]5how front panel when called []Highight <Enter > boolean

[ close afterwards if originally closed

[[]Show front panel when loaded

[ OK ]l Cancel ][ Help ]

Below we see an application with a simple and neat User Interface and with a Customized
Windows appearance.

Tutorial: An Introduction to LabVIEW



86

User Interface

B! Air Heater

Air Heater Control System
Controller | Other Settings | Model | Diagram -

PID Parameters
Proportional gain Kp Manual?

38
Integral time Ti [s] @

2 s
Derivative time Td [sec] u O_rnan [Vl 1

0 s L .|

Setpoint v_SP [gradC]

50,00

40,00

30,00~ S

Controller Mode
?0’00 Direct 2 peverse
31,4 2

Measurement Trend

=

Controller Trend

y_SP 31,38
yraw N | 27,91
y_fit MO | 27,75

15,0

T mm———.——
20,0 250 30,0 350 41,4
t[s]

11,4

Below we see a professional application created in LabVIEW that implement common GUI

objects such as a Toolbar, a Tree view, a List view, etc..

B Instrument Manager 4.7 Context-based menus. If you have selected, e.g., In

struments in the tree structure,

File Tools Windows Help you will create a New Instrument when selecting in the menru
@New... v ﬂ Add... \y Assign... v tﬁ Open... ’-C‘ Search.. () Refresh @ Documents ) Approved - ? 2
~%. My Lab
= Create or View L
¥ o selecte:
. Name l Status | Description Documents for selected o
+- o Analysis Methods e . item in the list -
3 ¥ Agilent Electroni... Approv... Varmeplate ;-_4
,S Parameters - = — s > S
¥ Autotitrator Approv... Amin titrering, generell titrering
o Reagents g
¥ Calculation NPK Al
,\4_‘;; Calibration Material = el |cn. RREOY )
':‘ Control Material Carbon residue Approv... Carbon residue :
¥ Damptrykksmaler Approv... Damptrykk i ko| Double-click or select Open in
- g , 3 Toolbar in order to open an item in
¥ Deion vannrensi... Approv... Deion vannrens] the list
Click on the different nodes in & Dest. inst. 205 Approv...
Orerinsee hedcms nieis 5 Destillasjon Approv... Destillasjon av kondensat
to the right -
¥ Dresger CMS Approv... Gassmaler
& Duggpunktsmal... Approv... Fuktighet, vann duggpunkt
g Fargetallmaler Approv... Fargetall til kondensat
7 Flammepunktsm... Approv... Flammepunkt
‘.‘_{- Fryseskap Approv... Fryseskap
?.-- Gas meter Approv... Gas meter
§ GC Agilent 6350N  Approv...
£ GCBTEX Approv... BTEX og amin i vann
£ GCDHA Approv... Detaljert hydrokarbon analyse
.=.-' GC MEG/TEG Approv... MEG/TEG og cksygenater
&~ oraioee e b s o e b
< >

Tutorial: An Introduction to LabVIEW



87 User Interface

Exercises

Exercise: User Interface

Create a Dialog Box where you use some of the Controls from the System palette. Make the
necessary settings in VI Properties in order to hide menus, buttons, create a Title, etc.

Create a Test VI from where you open this Dialog Box, enter some data in the Dialog Box,
and then retrieve these data in the calling VI.

Example:

| Pagel | page2

Select:
| v

Values

Yaluel: Value2:

Data
Data Data 2 Data 3
O O O

I OK ][ Cancel ]

Tutorial: An Introduction to LabVIEW



13 Plotting Data

This chapter explains the basic concepts when plotting data in LabVIEW.

LabVIEW offers powerful functionality for plotting data. In the Graph palette we have lots of
useful controls for plotting and visualization of data.

2 2
1 1 1
o =B OB B
\Waveform Ch... Waveform Gr... %Y Graph Ex X¥ Graph
2 2 2 2
1 1 1 1
- I/ -] =,
. Mixed Signal ...
o
N\
. 3D Picture Co...

Controls

The most useful are:

*  Waveform Chart
*  Waveform Graph
¢ XY Graph

Example:

This simple example creates a graph with some random values.

88



89 Plotting Data

PDBI

File Edit VYiew Project Operate Tools Window Help

> I@I @ @ | 13pt Application Font ~ ” - ”7[1:' "ﬁv | |t‘1v |

{3 Simple Graph.vi Front Panel @
ot

1

N~

Waveform Graph Plot 0 |

Amplitude

The example below show the basic difference between a “Chart” and a “Graph”.

Tutorial: An Introduction to LabVIEW



90 Plotting Data

[EHR

) ¢

aveform Chart

You use the “Graph” if you want to plot a set of data, e.g., an array with data, plot data from
a file, etc. Use the “Chart” if you want to plot one data point at a time, e.g., inside a loop,
etc.

13.1 Customizing
The different Chart components in LabVIEW offer a great deal of customizing.

You may click on the “Plot Legend” in order to set colors, different line
styles, etc.

1
Waveform Graph M Common Plots
1 -
Color >
Line Style »
Line wWidth 4
& Anti-aliased
=
-E Bar Plots »
< Fil Base Line  »
Interpolation  p
Point Style »
¥ Scale 4
= YScale 4
Time -

Tutorial: An Introduction to LabVIEW



91 Plotting Data

If you right-click on the Graph/Chart, you may set properties such as auto-scaling, etc.

Waveform Graph

o
El Wisible Ttems >
E. Find Terminal
e Change to Control
Description and Tip...
Create >
1:5 Replace >
Time Data Operations »
Advanced >
Fit Control ko Pane
Scale Object with Pane
Export Simplified Image...
X Scale > Marker Spacing >
¥ Scale >
 Autosize Plot Legend i
Formatting...
Properties Style >
Mapping >
Properties
J AutoScale X
 Loose Fit
 Visible Scale Label

If you select Properties, you get the following dialog:

®. Graph Properties: Waveform Graph

Display Format | Plats | Scales | Cursors | Documentation | DataBinding | Secu ¢ »

Time (X-Axis) v

Type Digits Precision Type
Floating point Al |0 - Digits of precision v
Scientific
Automatic Formatting

ST notation [] Hide trailing zeros

Exponent in multiples of 3
Decimal
Hexadecimal [] use minimum field width
Octal =
Binary -
Absolute time Pad with spaces on left
Relative time v

(3 Default editing mode
() Advanced editing mode

[ OK ][ Cancel ][ Help ]

Tutorial: An Introduction to LabVIEW



92 Plotting Data

You may also select which items that should be visible or not.

\

Visible Items » | ~ Label

Find Terminal Caption
Change to Control DataSocket LED
Description and Tip... J Plot Legend

Scale Legend

eae ’ / Graph Palette
Replace >

. Cursor Legend
Data Operations >

% Scrollbar

Advanced >
Fit Control to Pane J % Scale
Scale Object with Pane 4 ¥ Scale

Export Simplified Image...

% Scale >

B 2l ) The “Graph Palette” lets you zoom in and out on the Graph, etc.

Exercises

Exercise: Graph

Create a VI that reads data from a file and plot the data in a Graph component.

Exercise: Chart

Create a VI where you use Data Binding in order to retrieve data from an OPC demo.

Data Binding is set in the Properties - Data Binding tab:

Tutorial: An Introduction to LabVIEW



93 Plotting Data

B! Chart Properties: Waveform Chart

‘ Appearance H Display FormatJ Plats ‘ Scales ‘ Documentation | Data Binding ‘7 <>

Data Binding Selection
DataSocket v
Unbound
Shared Yariable Engine (NI-PSP)
 DataSocket

Path

opc: f{localhost/Mational

Instruments.OPCDemof¥T_I2:1.0..1000.0

Mational Instruments recommends that you use data binding through the Shared
Variable Engine. Refer to the LabYIEW Help for more information about data
binding controls.

[ oK ][ Cancel ][ Help ]

Exercise: Customizing

Customize the Graph and the Chart in the examples above in order to set colors, line
thickness, etc.

Tutorial: An Introduction to LabVIEW



14 Tips & Tricks

This chapter gives you some useful Tips & Tricks regarding LabVIEW.

14.1 10 functions you need to know
about

These are the 10 most useful functions in LabVIEW, so you could already now learn how to
use them and where to find them!

Build Array

array
element
element

appended array

element

Concatenates multiple arrays or appends
elements to an n-dimensional array.

This example using the Build Array function inside a For loop in order build an array with 10
elements.

N
;Arra
4, = a {#132]

.

Index Array

94



95 Tips & Tricks

Index Array

n-dimension array m

index 0 :
index n-1 = g

element or subarray

Returns the element or subarray of n-dimension array
at index.

It is always useful to find a specific value in an array:

JArra
[132 i element

-.t o —Ipis2

The Index Array is extendible, so you can drag it out to find more than one elements:

Array Size

Array Size

array size(s)

Returns the number of elements
in each dimension of array.

Find the size of an arbitrary array:

Tutorial: An Introduction to LabVIEW



Tips & Tricks

s? bif

- W
o, "
ET? o
1
[m]
-

Returns the value wired to the tinput or f
input, depending on the value of 5. If s is
TRUE, this function returns the value
wired to t. If s is FALSE, this function
returns the value wired to f,

Depending on the input data, go to the Alarm case or the Write Data case.

:Numeric|
P

*Write Data ¥

Concatenate Strings

Concatenate Strings

string 0 NS

string 1 leoscoceca concatenated string
9! f*—

string n-1

Concatenates input strings and 1D arrays of strings
into a single output string. For array inputs, this
function concatenates each element of the array.

This function concatenate several strings into on string:

oncatenated string|

IThis i

Search and Replace String

Tutorial: An Introduction to LabVIEW



97 Tips & Tricks

Search and Replace String

input string J"WW result string
search string M.E = number of replacements
replace string (" ! toffset past replacement
error out
error in (o error) weee

offset (0)

Replaces one or all instances of a substring with another substring. To
include the multiline? Boolean input, right-click the function and
select Regular Expression.

Use this when you want to replace or remove a certain text in a string.

pesult string

IPlease remove the fish From this tring |

fish

Match Pattern

befare substring
match substring
after substring
offset past match

string

regular expression ** :
offset (0) —

Searches for regular expression in string beginning at
offset, and if it finds a match, splits string into three
substrings. A regular expression requires a specific combination
of characters for pattern matching. For more information about
special characters in reqular expressions, refer to the regular
expression input description in the detailed help.

This is the most useful function when it comes to string manipulation.

pefore substring

{This is a long string f~~~~{EE8 3

after substring

!

Format Into String

Tutorial: An Introduction to LabVIEW



98 Tips & Tricks

Format Into String

format string

initial string % B resulting string
error in (no error) =2 Lo !I B grror out
input 1 {0) - h ....... P
L .mg%"J
input n {0)

Formats string path, enumerated type, time stamp,
Boolean, or numeric data as text.

Example:

[My Mame is %s. My phone is %s

Fesulting string]

Hans-Petter

Fract/Exp String to Number

Interprets the characters 0 through 9, plus,
minus, e, E, and the decimal point {usually
period) in string starting at offset as a
floating-point number in engineering
notation, exponential, or fractional format
and returns it in number.

This function converts a string into a number:

urneric
PIEL

Number To Fractional String

number

7
F-format string

Converts number to an F-format
(fractional notation), floating-point string at
least width characters wide or wider if
Necessary.

Tutorial: An Introduction to LabVIEW



99 Tips & Tricks

Example:

‘Nume.rlcl = trin
DBL |
o [f.
-

14.2 The 10 most useful Short-cuts

These are the 10 most useful short-cuts in LabVIEW, so you could already now learn how to
use them!

Short-Cut Description

Ctrl+B Deletes all broken wires in a VI

Ctrl +. Stops the Running VI

Ctrl + E Toggle between the Front Panel and Block Diagram

Tab Cycles through the most common Tools (Automatic Tool Selection
should be disabled!)

Ctrl + Mouse Scrolls through subdiagrams in Case, Event or Sequence structures

wheel

Ctrl+H Displays the Context Help window

Ctrl + Mouse Opens the Block Diagram directly

Double-click on a

SubVi

Ctrl + Arrows Move faster. You first have to select a SubVI, a Function, Object, etc

(»€<d)

Ctrl + W Close the SubVI

Double-click ona Selects the hole wire

wire

Tutorial: An Introduction to LabVIEW



15 Example Application

In this example we will go through an example application. The application uses most of the
LabVIEW features you have learned in this Tutorial.

The application is called “Glossary”. It is a simple application that learns kid’s words in
English. Since the application is for kids, the user interface is create with a “childish” look
and feel.

o
nr~ Glossary

This is an example of how to create a user-friendly application in LabVIEW that uses most of
the functionality in LabVIEW, such as State-machine principles, reading and writing to files,
dialog boxes, graphics and sound effects. Basic functions for string and array manipulation,
and of course while loops, case structures, subVls, etc. The example also uses the Project
Explorer to collect all the files in one place and to create an executable file of the solution.
Finally it uses the Project Explorer to create a setup package you can use to install the
application easily on other computers.

100



101 Example Application

| created this application for my kids in the Primary school who had problems with learning
their homework in English.

Use the code as an example for creating your own stunning LabVIEW applications. The code
is available for download at my blog: http://home.hit.no/~hansha.

Below we see the Glossary List:

g If you click on the little book symbol in your application, this window will pop up:

pig-gris

&
cow-ku
house-hus Q
car-bil
bus-buss
bike-sykkel
cooker-ovn
bed-seng 1
livingroom-stue
kitchen-kjokken

harse-hest v

~

@ Click tis symbol and you can enter new words:

Tutorial: An Introduction to LabVIEW



102 Example Application

English:

CoOw

Norwegian:

ku

The application uses the Project Explorer:

Tutorial: An Introduction to LabVIEW



103 Example Application

P Project Explorer - Glossary. lvproj E]@@
File Edit Yiew Project

Operate Tools Window Help

NS % h O X||BR|EE

Items | Files

= [T_g,l Project: Glossary.lvproj
= B My Computer

[+ LJ MainvI

& ) Subvis

- [£] MNorsk.txt

- [£] Engelsk.txt

- o ukico

- |J| bird.wav

- )| cow.wav

SR Glossary User Manual.pdf

Dependencies

2l

)
{

‘ot

. Build Specifications
- 4 Glossary Setup

“ 7 Glossary

=
;

4

This makes it easy to keep an overview of all your files in your project. You may also use the
Project Explorer to create an executable file of your application. In addition you may also
create an installation package so you can easily install the application on other computers.
As part of the installation the LabVIEW Run-time engine will be installed.

Block Diagram:

The application uses the state machine principle, which makes it easy to create large
applications:

Tutorial: An Introduction to LabVIEW



104 Example Application

P Glossary [Glossary.vi] Block Diagram on Glossary. lvproj/My Computer

File Edit View Project Operate Tools Window Help ,—‘
18] o (1R biF].s [ o]l - m o7
~
T["Event Handler", Default ]
iCheck Error|s ﬂ»caseSelectov =
Py ,’r el Case :
iestion:
S B
%Number =
] {=]-Not in Use =
INext
Source
Type
Time
CtRef
Oldval
Newval
error in (no error) error out
= v} 2
] :
v
IGlnssary.varo]IMy Computer ¢ >

Tutorial: An Introduction to LabVIEW



16 Additional Exercises

This chapter lists lots of additional exercises you could try out in order to improve your
LabVIEW skills.

Exercise: vCard Reader

Create an application that reads information from a vCard.

vCard is a file format standard for electronic business cards. vCards are often attached to
e-mail messages, but can be exchanged in other ways, such as on the World Wide Web. They
can contain name and address information, phone numbers, URLs, logos, photographs, and
even audio clips.

Example:

BEGIN:VCARD

VERSION:2.1

N:Gump; Forrest

FN:Forrest Gump

ORG:Bubba Gump Shrimp Co.

TITLE:Shrimp Man

TEL;WORK; VOICE: (111) 555-1212

TEL;HOME; VOICE: (404) 555-1212

ADR;WORK:; ;100 Waters Edge;Baytown;LA;30314;United States of America

LABEL; WORK; ENCODING=QUOTED-PRINTABLE:100 Waters Edge=0D=0ABaytown, LA 30314=0D=0AUSA
ADR;HOME:; ;42 Plantation St.;Baytown;LA;30314;United States of America

LABEL; HOME; ENCODING=QUOTED-PRINTABLE:42 Plantation St.=0D=0ABaytown, LA 30314=0D=0AUSA
EMAIL; PREF; INTERNET: forrestgump@example.com

REV:20080424T195243Z

END:VCARD

For more information about the vCard format, see http://en.wikipedia.org/wiki/VCard.

The application should look something like this:

P vCard Application Qif\@
Path: )
\

When the user click Open, then a dialog box like this should appear:

105



106 Additional Exercises

Contact ‘Address Other

MName

First Mame:

| |

Last Mame.
| |

Full Mame:

| |

Phone

Waork:

Home:

Cell:

I OK I [ Cancel J

Requirements:

¢ Use the Project Explorer

¢ Use the State Machine principle

* Use the Event Structure

¢ Use System Controls

* Set the appropriate settings in the VI Properties.
* Create a executable application (vCard.exe)

Exercise: vCard Write & Read

Extend the application in the previous example. You should now be able to both write and
read vCard files. The application could look something like this:

Tutorial: An Introduction to LabVIEW



107 Additional Exercises

B vCard Application E]

Contacts:
Nils Pettersen
Arne Jensen
Bjgrn Hansen
Hans-Petter Halvorsne

|2

v

[ wew [ Eat |

When the user clicks New, the dialog box in the previous exercise appears. The user may
enter a new vCard. If the user clicks Edit, a dialog box with the selected contact should
appear.

Exercise: Read/Write from .ini files

e o o [oRed e
o= 2> b, b, %-
i8] B (&
Open Config ... ReadKey.vi Write Key.vi  Remove Key.vi Remove Secti... Close Config ...
— & b [0 @?
B ‘)
Get Key Nam... Get Section N... Mot A Config ...

Exercise: ActiveX

Create a simple Web Browser using ActiveX and the Internet Explorer ActiveX control
(Microsoft Web Browser)

Use the ActiveX Container from the Containers control palette:

Tutorial: An Introduction to LabVIEW



108 Additional Exercises

Containers

4 | Q search | & view

Hor Splitter Bar  Vert Splitter Bar

o [

Tab Control SubPanel

Use the ActiveX function palette:

o Miew

|"’ @l #3405
o cl
Automation O... Close Refere... To Variant Variant To Data

= & A

Property Mod... Invoke Mode ... Reaqister Eve... Unregister Fo...

o

Static VI Refe...

The application could look something like this:

B! Web Browser Q@

URL:
[ http:ffwww,vg.no l

WebBrowser

NOKAS-ran

Still sprsmal om Mokas-boka! WU
Tirsdag 27. oktober Vazret hos VG na: 7.4 grader Nedber: 0.0 d

TIPS

=l — |

Tutorial: An Introduction to LabVIEW



109 Additional Exercises

Exercise: Themes

In e.g., ASP.NET we have something called Themes. Themes are used to change the
appearance of your whole application regarding to color, font, pictures, etc.

LabVIEW do not offer such a functionality , but try to create your own Theme Configurator,
so you can change the appearance of your VI instantly.

Here is an example of how Windows XP handles different Themes:

Egenskaper for Skjerm @

| Temaer | Skrivebord | Skiermbeskylter‘ Utseende |Innstillinger |

Inaktivtvindu [ |+©lx]
Aktivt vindu M=

Meldingsboks  [X]

oK

Vinduer og knapper:

[iwindows P-sti v
Fargevala:
| Standard [blé)] v/

Skriftstarrelse: Effekter...
Nama J

[ ok || avwbmt | Bw

Create a similar Theme Configurator so you may easily change the appearance of your Vis.

Tutorial: An Introduction to LabVIEW



17 What's Next?

17.1 My Blog

For more information about LabVIEW, visit my Blog: http://home.hit.no/~hansha/

17.2 Training

This Tutorial is a part of a series with other Tuturials | have made, such as:

* Introduction to LabVIEW

¢ Data Acquisition in LabVIEW

* Control and Simulation in LabVIEW

¢ LabVIEW MathScript

* Linear Algebra in LabVIEW

¢ Datalogging and Supervisory Control in LabVIEW
*  Wireless Data Acquisition in LabVIEW

* Intermediate Topics in LabVIEW

¢ Advanced Topics in LabVIEW

* etc

These Training Kits are available for download (.pdf files, source code, additional resources,
etc.) from my blog: http://home.hit.no/~hansha

17.3 Additional Resources

You find lots of information about LabVIEW in National Instruments web site:

WWW.nhi.com

17.4 Examples

In the NI example Finder (Help—>Find Examples...) you find lots of useful examples that you
can play with or use as a start when creating your own applications.

110



111

What’'s Next?

Browse ‘ Search H Submit |

Double-click an example to open it. Information
) Analyzing and Processing Signals -~ ~
Browse according to: ) Building User Interfaces
':?' Task ) Communicating with External Applications
_ ) Distributing and Documenting Applications
() Directory Structure ) Favorites
3 Fundamentals
- i Arrays and Clusters --
i - "
LabVIEW Zone 3 Debugging
CONNECT TO YOUR COMMUNITY 3 File Input and Qutput
) Graphs and Charts
< a:z‘r"l )| Aicles ~J Local and Global Variables
—) Loops and Structures
% g‘:ﬁ”m”m" (Y ' Resources ) Numeric and Boolean
) Object-Oriented
& Code 2| User = -
% Sharing 2} ) ) Shared Yariable 2
) Strings =
‘g sc:";‘::‘ ) Time and Date Requirements
) Waveforms
Visit LabVIEW Zone ___] Hardware Input and Output
) Industry Applications
) Most Recent
[[J1include ni.com examples ) Metworking
.. ni.com query timeout ) New Examples for LabYIEW 8.x B
) Optimizing Applications
Hardware ~) Printing and Publishing Data
‘ Find hardware b ‘ ~1 Programmatically Controlling YIs ™
[CILimit results to hardware Add to Favorites I [ Setup... ] [ Help ] [ Close ]

17.5

As part of the LabVIEW installation there exist lots of useful documentation, such as Getting

Documentation

Started manuals, User Manuals, etc.

[0 C:\Programfiler\National InstrumentsiLabYIEW 8.6\manuals

ebord
lin datamaskin
i (C:) Lokal disk

[) 0516ddbd4dbdodfbadfaea7belef

) Arbeid
) dell

= [2) Documents and Settings
I Administrator

) all Users
= ) hansha

|) Deskrop
[ Favorites

S e e

|

=| _readmefirst.txt
= CD_User_Manual.pdf
== Coreference. pdf

LY _Fundamentals. pdf
. Lv_Getting_Started.pdf
. L¥_Quick_Reference.pdf
. Lv_Release_Motes.pdf
= L¥_Upgrade_Motes.pdf
= PID_User_Manual. pdf
< |SIreference.pdf

Tutorial: An Introduction to LabVIEW




112 What’'s Next?

17.6 LabVIEW Wiki

LabVIEW Wiki is the free LabVIEW information resource that anyone can edit.

http://labviewwiki.org/Home

& Login/ create account

| page || discussion | | view source || history

EVIEWRILEIS
wiki

—

Welcome to LabVIEW™ Wiki 0CuEy  ObHE = AZ_index

= Editing = Contents = Featured
. ’ ) '
s The free LabVIEW mformztglgnrr:s;eource that anyone can edit. = Questions » Categories Conient
VI I articles
= Home
= Internet
- E::::;t; Content = XNodes = Application Design & Architecture . o
L L
" s » LabVIEW FAQ « Extemnal Code RO
L] Wi
A Development Environment = Database .
* AZlndex " o [? . " Ueer et = Design pattemns
= Random Article " Gg;P s : C‘ :\’;OOP b Blserkr;; ace [ = LabVIEW Community Ecosystem
search " .a.n 8 = Bloc ) |ag.ra.m mages ) = Math & Signal Processing
= VI Scripting = Machine Vision and Imaging
. » OtrrPages
 — —— | Navigation Featured Articles
interaction i
« About = Getting around on LabVIEW Wiki Here are a few articles that have been chosen as a sample of our content
= Community Portal = Tracking changes to Wiki pages = Project management tarot deck for the G programmer
] Repent Changes Wiki Editing = Glossary of LabVIEW terms
= Main Help - - - = LabVIEW keyboard shortcuts
= Howto Edit If you want to start experimenting with g0 ¢orplate collection of LabVIEW tips and tricks
= Questions Wiki editing try our Sandbox = How to report a LabVIEW bug
toolbox = How to edit Wiki pages = How to run multiple instances of the same LabVIEW version
= What links here = Howto start a new page = How to Make icons smaller than the entire square
= Related changes i itil .
e g Some are having problems editing 4 News & Work in Progress
= Uploadiile pages even though they are logged in.
L] Speual pageg To correct this. try logging out of the There are many articles that contain partial contents. are stubs (placeholders) or are simply
. ;rlntable'y'te;9||?n LabVIEW Wiki and then logging back ~ incomplete. Find one that may interest you and start editing. If you want to start a new article
= Fermanentlink in. This usually corrects the problem. If 90 right a head. any LabVIEW related topic is acceptable. See our Help page for assistance
vou do not have an account. ao hereg® N editing.

17.7 LabVIEW on YouTube

There are lots of LabVIEW videos available at YouTube:

(i1 Tube,

http://www.youtube.com/results?search_query=labview&search=Search

Tutorial: An Introduction to LabVIEW



Quick Reference

LabVIEW

Keyboard Shortcuts

Objects and Movement '

Selects multiple objects; adds object to

Shift-click current selection.
14 «{amrow keys) mm selected objects one pixel ata
. Moves selected objects several pixels
Shift-1. >« at a time.
Shift-click (drag) Moves selected objects in one axis.
Ctrl-click (drag) Duplicates selected objects.
Curl-Shift-click (drag)  JuPlates seleced objects and moves
Shift-resize Resizes rggj:ct while maintaining
- Resizes object while maintaining
Ctrl-resize center point.
Resizes selected object while
Ctrl-Shift-resize maintaining center point and aspect
ratio.
Ctrl-drag a rectangle Adds more working space to the front
in open space panel or block diagram.
% Selects all front panel or block dizgram
Cul-A items.
Ctrl-Shift-A m last alignment operation on
Curl-D ;P;r;o;rsns last distribution operation on
. Adds a free label to the front panel or
Double-click open space  block diagram if automatic tool
selection is enabled.
Scrolls through subdiagrams of a Case,
Ctrl-mouse wheel Event, or Stacked Sequence structure.
Disables preset alignment positions
Spacebar (drag) when moving labels or captions.
Carl-U Reroutes all wires and rearranges
block diagram objects automatically.
Debugging
Cl-4 Steps into node.
Ctrl-— Steps over node.
Cul-4 Steps out of node.
Basic Editing
Ctl-Z Undoes last action.
Ctrl-Shift-Z Redoes last action.
Ctrl-X Cuts selected objects.
Curl-C Copies selected objects
Ctrl-v Pastes last cut or copied objects.

Navigating the LabVIEW Environment

Curl-E Displays block diagram or front panel windows.
Curl-# Enables or disables grid alignment.

[Mac 0S) Press the Command-* keys.
Ctrl-/ Maximizes and restores window.
Crl-T Tiles front panel and block diagram windows.
Ctrl-F Finds objects or text.
Ctrl-G Searches Vls for next instance of object or text.
Ctrl-Shift-G Searches Vls for previous instance of object or text.
Ctrl-Shift-F Displays the Search Results window.
Ctrl-Tab Cycles through LabVIEW windows.
Ctrl-Shift-Tab  Cycles through LabVIEW windows in reverse order.
Ctrl-Shift-N Displays the Navigation window.
Ctrl-1 Displays the VI Properties dialog box.
Ctrl-L Displays the Error list window.
Ctrl-Y Displays the History window.
Ctrl-Shift-W Displays the All Windows dialog box.
el 1 .

Navigating the VI Hierarchy Window

Ctrl-D Redraws the window.
Ctrl-A Shows all Vis in the window.

. Displays the subVls and other nodes that make up
Cork-click VI 1+ V1 you select in the window.
Enter? Finds next node that matches the search string.
Shift-Enter ' Finds previous node that matches the search string.

1 After initiating a search by typing in the VI Hierarchy window.

Ctrl-N Creates a new, blank VI.
Ctrl-0 Opens an existing VI
Curl-W Closes the VI.

Curl-S Saves the VI.
Ctrl-Shift-S Saves all open files.
Cul-P Prints the window.
Cwrl-Q Quits LabVIEW.

Z
2‘i

(Mac 0S) Press the Command-Shift-H keys.
Ctrl-Shift-L Locks the Context Help window.
Ctirl-? or F1 Displays the LabVIEW Help.

Refer to the LabVIEW Help for keyboard shortcut variations on other
system locales and keyboard layouts.

113



Quick Reference

Tools and Palettes

Ctrl

Shift

Ctrl-Shift over open
space

Spacebar'
Shift-Tab'

Shift-right-click

! If automatic tool selection is disabled.

Switches to next most useful tool.
Switches to Positioning tool.
Switches to Scrolling tool.

Toggles between two most common
toois

Enables automatic tool selection.

Cycles h four most common tools if
you disabled automatic tool selection by
clicking the Automatic Tool Selection

tool selection.

Navigates temporary Controls and
Functions palettes.

Navigates into a temporary palette.
Navigates out of a temporary palette.
Displays a temporary version of the

Tools palette at the location of the
CUTSOF.

Double-click subVl  Displays subV! front panel.
Ctrl-double-click D subV! block diagram and front
o e,
DragVliconto block Places that Vl as 2 subVl on the block
diagram diagram.

- - Places that VI as a subVl on the block
Shift-drag Vl icon : 5 -

di with constants wired for controls
to block diagram ﬂuam non-default values.
Ctrl-right-click block
diagram and select  Opens the front panel of that V1.

Vl from palette

Ctrl-R

Ctrl-*

Ctrl-M

Ctrl-Run button
Ctrl-Shift-Run button
Ctrl-41

Ctrl-11

Tab'

Shift-Tab!
" While the VI is running

Runs the VI.

Stops the VI.

Changes to run or edit mode.

Recompiles the current VI.

Recompiles all Vs in memory.

Moves key focus inside an array or cluster.
Moves key focus outside an array or cluster.

Navigates the controls or indicators
according to tabbing order.

Navigates backward through the controls
or indicators.

Text

Double-click
Triple-click

1 In the Font dialog box.

Selects a single word in a string.
Selects an entire string.

Moves forward in string by one word.
Moves backward in string by one word.

Moves to beginning of current line in
string.

Moves to end of current line in string.
Moves to beginning of entire string.
Moves to end of entire string.

Adds new items when entering items in
enumerated type controls and constants,

ring controls and constants, or Case
structures.

Cancels current edit in a string.
Ends text entry.

Increases the cumrent font size.
Decreases the current font size.
Displays the Font dialog box.
Changes to the Application font.
Changes to the System font.
Changes to the Dizlog font.
Changes to the current font.

Cul-B Removes all broken wires.
Esc, right-click, or While wiring, cancels a wire you
click terminal started.
Single-click wire Selects one segment.
Double-click wire Selects a branch.
Triple-click wire Selects entire wire.
A While wiring, disables automatic
wire routing temporarily.
. While wiring, tacks down wire
Dosble-click Sl cameciag
While wiring, switches the direction
spacebar of a wire between horizontal and
vertical.
While moving objects, toggles
spacebar automatic wging. .
Ctrl-click input on function  Switches the two input wires.
with two inputs
AT While wiring, undoes last point
Shift-click where you set a wire.

Note: The Ctrl key in these shortcuts coresponds to the Option or
Command key on Mac 0S and the Alt key on Limux.

Tutorial: An Introduction to LabVIEW



» ¥ 7
|
Hogskolen i Telemark

Telemark University College
Faculty of Technology
Kjglnes Ring 56
N-3918 Porsgrunn, Norway

www.hit.no

Hans-Petter Halvorsen, M.Sc.
Telemark University College

Department of Electrical Engineering, Information Technology and Cybernetics

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/




Quick Reference

Tutorial: An Introduction to LabVIEW



