

ECE 334: Electronic Circuits

Lecture 3: BJT DC Circuit Analysis

BJT 'Q' Point (Bias Point)

- •Q point means Quiescent or Operating point
- Very important for amplifiers because wrong 'Q' point selection increases amplifier distortion
- •Need to have a stable 'Q' point, meaning the the operating point should not be sensitive to variation to temperature or BJT β , which can vary widely

Example 1: Four Resistor bias Circuit for Stable 'Q' Point

By far best circuit for providing stable bias point

$$V_{B} = V_{TH} = \frac{Vcc R_{2}}{R_{1} + R_{2}}$$
 $R_{B} = R_{TH} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$

Example 1 (2)

Applying KVL to the base-emitter circuit of the Thevenized Equivalent form

$$V_B - I_B R_B - V_{BE} - I_E R_E = 0$$
 (1)

Since
$$I_E = I_B + I_C = I_B + \beta I_B = (1 + \beta)I_B$$
 (2)

Replacing I_E by $(1 + \beta)I_B$ in (1), we get

$$I_{B} = \frac{V_{B} - V_{BE}}{R_{B} + (1 + \beta)R_{E}}$$
 (3)

If we design $(1+\beta)R_E >> R_B (\text{say } (1+\beta)R_E >> 100R_B)$

Then
$$I_B \approx \frac{V_B - V_{BE}}{(1+\beta)R_E}$$
 (4)

Example 1 (3)

And
$$I_{\rm C} = I_{\rm E} \approx \frac{V_{\rm B} - V_{\rm BE}}{R_{\rm E}}$$
 (for large β) (5)

Hence I_C and I_E become independent of β !

Thus we can setup a Q-point independent of β which tends to vary widely even within transistors of identical part number (For example, β of 2N2222A, a NPN BJT can vary between 75 and 325 for $I_C = 1$ mA and $V_{CF} = 10V$)

A 2N2222A is connected as shown with R₁ = 6.8 k Ω , R₂ = 1 k Ω , R_C = 3.3 k Ω , R_E = 1 k Ω and V_{CC} = 30V. Assume V_{BE} = 0.7V. Compute V_{CC} and I_C for β = i)100 and ii) 300

Example 2 (2)

i)
$$\beta = 100$$

$$V_{B} = V_{TH} = \frac{Vcc R_{2}}{R_{1} + R_{2}} = \frac{30*1}{6.8 + 1} = 3.85V$$

$$R_B = R_{TH} = \frac{R_1 R_2}{R_1 + R_2} = \frac{6.8 * 1}{6.8 + 1} = 0.872 \text{k}\Omega$$

$$I_{B} = \frac{V_{B} - V_{BE}}{R_{B} + (1 + \beta)R_{E}} = \frac{3.85 - 0.7}{0.872 + 101*1} = 30.92\mu A$$

$$I_{CQ} = \beta I_B = 3.09 \text{ mA}$$

 $I_{EQ} = (1 + \beta)I_B = 3.12 \text{ mA}$

$$V_{CEQ} = V_{CC} - I_C R_C - I_E R_E = 30 - 3.09 * 3.3 - 3.12 * 1 = 16.68 V$$

Example 2 (3)

i)
$$\beta = 300$$

$$\begin{split} V_{\text{B}} &= V_{\text{TH}} = \frac{Vcc\,R_2}{R_1 + R_2} = \frac{30\,^*1}{6.8\,^*1} = 3.85V \\ R_{\text{B}} &= R_{\text{TH}} = \frac{R_1\,R_2}{R_1 + R_2} = \frac{6.8\,^*1}{6.8\,^*1} = 0.872k\Omega \\ I_{\text{B}} &= \frac{V_{\text{B}} - V_{\text{BE}}}{R_{\text{B}} + (1 + \beta)R_{\text{E}}} = \frac{3.85 - 0.7}{0.872 + 301\,^*1} = 10.43\mu\text{A} \\ I_{\text{CQ}} &= 300I_{\text{B}} = 3.13\,\text{mA} \\ I_{\text{EQ}} &= (1 + \beta)I_{\text{B}} = 3.14\,\text{mA} \end{split}$$

$$V_{CEQ} = V_{CC} - I_{C}R_{C} - I_{E}R_{E} = 30 - 3.13 * 3.3 - 3.14 * 1 = 16.53 V$$

Example 2 (4)

	β = 100	β = 300	% Change
VCEQ	16.68 V	16.53 V	0.9 %
ICQ	3.09 mA	3.13 mA	1.29 %

The above table shows that even with wide variation of $\,\beta$ the bias points are very stable.

$$V_{EQ} = V_{CC} \frac{R_1}{R_1 + R_2} \qquad R_{EQ} = R_1 \| R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{EQ} = R_{EQ} I_B + V_{BE} + R_E I_E$$

$$4 = 12,000 I_B + 0.7 + 16,000 (\beta_F + 1) I_B$$

$$\therefore I_B = \frac{V_{EQ} - V_{BE}}{R_{EQ} + (\beta_F + 1) R_E} = \frac{4 \text{ V} - 0.7 \text{ V}}{1.23 \times 10^{6} \Omega} = 2.68 \ \mu\text{A}$$

$$I_C = \beta_F I_B = 201 \ \mu\text{A}$$

$$I_{E} = (\beta_{F} + 1)I_{B} = 204 \ \mu A$$

$$V_{CE} = V_{CC} - R_{C}I_{C} - R_{E}I_{E}$$

$$V_{CE} = V_{CC} - \left(R_{C} + \frac{R_{F}}{\alpha_{F}}\right)I_{C} = 4.32 \text{ V}$$

F. A. region correct - Q-point is (201 μ A, 4.32 V)

Example 3 (2)

- All calculated currents > 0, $V_{BC} = V_{BE} V_{CE} = 0.7 4.32 = -3.62 \text{ V}$ $V_{CE} = V_{CC} \left[R_C + \frac{R_F}{\alpha} \right] I_C = 12 38,200 I_C$
- Hence, base-collector junction is reverse-biased,

$\overline{I_{B}=5}$ rward-active region operation

The two points needed to plot the load line are (0, 12 V) and (314 μ A, 0).

- JikdSilting load line is plotted on common-emitter output characteristics.
 - I_B = 2.7 μ A, intersection of corresponding characteristic with load line gives Q-point.

Four-Resistor Bias Network for BJT: Design Objectives

We know that

$$I_{E} = \frac{V_{EQ} - V_{BE} - R_{EQ}I_{B}}{R_{E}} \cong \frac{V_{EQ} - V_{BE}}{R_{E}} \quad \text{for} \quad R_{EQ}I_{B} << (V_{EQ} - V_{BE})$$

- This implies that $I_B << I_{2}$, so that $I_1 = I_2$. So base current doesn't disturb voltage divider action. Thus, Q-point is independent of base current as well as current gain.
- Also, V_{EQ} is designed to be large enough that small variations in the assumed value of V_{BE} won't affect I_E .
- Current in base voltage divider network is limited by choosing $I_2 \le I_C/5$. This ensures that power dissipation in bias resistors is < 17 % of total quiescent power consumed by circuit and $I_2 >> I_B$ for $\beta > 50$.

Four-Resistor Bias Network for BJT: Design Guidelines

- Choose Thévenin equivalent base voltage $\frac{V_{CC}}{4} \le V_{EQ} \le \frac{V_{CC}}{2}$
- Select R_1 to set $I_1 = 9I_B$. $R_1 = \frac{V_{EQ}}{9I_B}$
- Select R_2 to set $I_2 = 10I_B$. $R_2 = \frac{V_{CC} V_{EQ}}{10 I_B}$
- R_E is determined by V_{EQ} and desired I_C . $R_E \cong \frac{V_{EQ} V_{BE}}{I_C}$
- R_C is determined by desired V_{CE} . $R_C \cong \frac{V_{CC} V_{CE}}{I_C} R_E$

- **Problem:** Design 4-resistor bias circuit with given parameters.
- Given data: $I_C = 750 \,\mu\text{A}$, $\beta_F = 100$, $V_{CC} = 15 \,\text{V}$, $V_{CF} = 5 \,\text{V}$
- Assumptions: Forward-active operation region, $V_{BF} = 0.7 \text{ V}$
- Analysis: Divide $(V_{CC} V_{CE})$ equally between R_E and R_C . Thus, $V_E = 5 \text{ V}$ and $V_C = 10 \text{ V}$

$$R_{C} = \frac{V_{CC} - V_{C}}{I_{C}} = 6.67 \text{ k}\Omega$$

$$R_{E} = \frac{V_{E}}{I_{E}} = 6.60 \text{ k}\Omega$$

$$V_{B} = V_{E} + V_{BE} = 5.7 \text{ V}$$

$$I_{B} = \frac{I_{C}}{\beta_{E}} = 7.5 \text{ }\mu\text{A}$$

$$I_1 = 9I_B = 67.5 \ \mu\text{A}$$

$$R_1 = \frac{V_B}{9I_B} = 84.4 \ \text{k}\Omega$$

$$R_2 = \frac{V_{CC} - V_B}{10I_B} = 124 \ \text{k}\Omega$$

 $I_2 = 10I_R = 75.0 \,\mu\text{A}$

- **Problem:** Find Q-point for *pnp* transistor in 2-resistor bias circuit with given parameters.
- Given data: $\beta_F = 50$, $V_{CC} = 9 \text{ V}$
- Assumptions: Forward-active operation region, $V_{EB} = 0.7 \text{ V}$
- Analysis:

$$V_{EC}$$
 I_C
 I_{EB}
 I_{E

$$9 = V_{EB} + 18,000 I_B + 1000 (I_C + I_B)$$

$$\therefore 9 = V_{EB} + 18,000 I_B + 1000 (51)I_B$$

:
$$I_B = \frac{9V - 0.7V}{69,000 \Omega} = 120 \mu A$$

$$I_B = 50 I_B = 6.01 \text{ mA}$$

$$V_{EC} = 9 - 1000 (I_C + I_B) = 2.88 \text{ V}$$

$$V_{BC} = 2.18 \text{ V}$$

Forward-active region operation is correct Q-point is: (6.01 mA, 2.88 V)