ECE 334: Electronic Circuits

Lecture 3:
 BJT DC Circuit Analysis

BJT ‘Q’ Point (Bias Point)

- Q point means Quiescent or Operating point
- Very important for amplifiers because wrong ' Q ' point selection increases amplifier distortion
- Need to have a stable ' Q ' point, meaning the the operating point should not be sensitive to variation to temperature or BJT β, which can vary widely

Example 1: Four Resistor bias Circuit for Stable ‘Q’ Point

By far best circuit for providing stable bias point

Example 1

$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{TH}}=\frac{\mathrm{Vcc} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \quad \mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$

Example 1 (2)

Applying KVL to the base-emitter circuit of the Thevenized Equivalent form
$V_{B}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0$
Since $I_{E}=I_{B}+I_{C}=I_{B}+\beta I_{B}=(1+\beta) I_{B} \quad$ (2)
Replacing I_{E} by $(1+\beta) I_{B}$ in (1), we get

$$
\begin{equation*}
I_{B}=\frac{V_{B}-V_{B E}}{R_{B}+(1+\beta) R_{E}} \tag{3}
\end{equation*}
$$

If we design $(1+\beta) R_{E} \gg R_{B}\left(\right.$ say $\left.(1+\beta) R_{E} \gg 100 R_{B}\right)$

$$
\begin{equation*}
\text { Then } \quad I_{B} \approx \frac{V_{B}-V_{B E}}{(1+\beta) R_{E}} \tag{4}
\end{equation*}
$$

Example 1 (3)

And $\quad I_{C}=I_{E} \approx \frac{V_{B}-V_{B E}}{R_{E}} \quad$ (for large β)
Hence I_{C} and I_{E} become independent of β !

Thus we can setup a Q-point independent of β which tends to vary widely even within transistors of identical part number (For example, β of 2N2222A, a NPN BJT can vary between 75 and 325 for $\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$)

Example 2

> A 2 N 2222 A is connected as shown with $R_{1}=6.8 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{C}}=3.3 \mathrm{k} \Omega$, $R_{\mathrm{E}}=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. Compute V_{CC} and I_{C} for $\left.\beta=\mathrm{i}\right) 100$ and ii) 300

Example 2 (2)

$$
\begin{gathered}
\text { i) } \beta=100 \\
\mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{TH}}=\frac{{\mathrm{Vcc} \mathrm{R}_{2}}_{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{30 * 1}{6.8+1}=3.85 \mathrm{~V}}{\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{6.8 * 1}{6.8+1}=0.872 \mathrm{k} \Omega} \begin{array}{c}
\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}} \\
\mathrm{I}_{\mathrm{B}}=\frac{3.85-0.7}{\mathrm{R}_{\mathrm{B}}+(1+\beta) \mathrm{R}_{\mathrm{E}}}=\frac{3.872+101 * 1}{0.8}=30.92 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{CQ}}=\beta \mathrm{I}_{\mathrm{B}}=3.09 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{EQ}}=(1+\beta) \mathrm{I}_{\mathrm{B}}=3.12 \mathrm{~mA}
\end{array} \\
\mathrm{~V}_{\text {CEQ }}=\mathrm{V}_{\mathrm{CC}}-\mathrm{I}_{\mathrm{C}} \mathrm{R}_{\mathrm{C}}-\mathrm{I}_{\mathrm{E}} \mathrm{R}_{\mathrm{E}}=30-3.09 * 3.3-3.12 * 1=16.68 \mathrm{~V}
\end{gathered}
$$

Example 2 (3)

$$
\begin{gathered}
\text { i) } \beta=300 \\
\mathrm{~V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{TH}}=\frac{\mathrm{Vcc} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{30 * 1}{6.8+1}=3.85 \mathrm{~V} \\
\mathrm{R}_{\mathrm{B}}=\mathrm{R}_{\mathrm{TH}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{6.8 * 1}{6.8+1}=0.872 \mathrm{k} \Omega \\
\mathrm{I}_{\mathrm{B}}=\frac{\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{\mathrm{B}}+(1+\beta) \mathrm{R}_{\mathrm{E}}}=\frac{3.85-0.7}{0.872+301 * 1}=10.43 \mu \mathrm{~A} \\
\mathrm{I}_{\mathrm{cQ}}=300 \mathrm{I}_{\mathrm{B}}=3.13 \mathrm{~mA} \\
\mathrm{I}_{\mathrm{EQ}}=(1+\beta) \mathrm{I}_{\mathrm{B}}=3.14 \mathrm{~mA}
\end{gathered}
$$

$$
V_{C E Q}=V_{C C}-I_{C} R_{C}-I_{E} R_{E}=30-3.13 * 3.3-3.14 * 1=16.53 V
$$

Example 2 (4)

	$\beta=100$	$\beta=300$	\% Change
VCEQ	16.68 V	16.53 V	0.9%
ICQ	3.09 mA	3.13 mA	1.29%

The above table shows that even with wide variation of β the bias points are very stable.

Example 3

$$
\begin{aligned}
& V_{E Q}=V_{C C} \frac{R_{1}}{R_{1}+R_{2}} \quad R_{E Q}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \\
& V_{E Q}=R_{E Q} I_{B}+V_{B E}+R_{E} I_{E} \\
& 4=12,000 I_{B}+0.7+16,000\left(\beta_{F}+1\right) I_{B} \\
& \therefore I_{B}=\frac{V_{E Q}-V_{B E}}{R_{E Q}+\left(\beta_{F}+1\right) R_{E}}=\frac{4 \mathrm{~V}-0.7 \mathrm{~V}}{1.23 \times 10^{6} \Omega}=2.68 \mu \mathrm{~A} \\
& I_{C}=\beta_{F} I_{B}=201 \mu \mathrm{~A}
\end{aligned}
$$

$\beta_{F}=75$

$$
\begin{aligned}
& I_{E}=\left(\beta_{F}+1\right) I_{B}=204 \mu \mathrm{~A} \\
& V_{C E}=V_{C C}-R_{C} I_{C}-R_{E} I_{E} \\
& V_{C E}=V_{C C}-\left(R_{C}+\frac{R_{F}}{\alpha_{F}}\right) I_{C}=4.32 \mathrm{~V}
\end{aligned}
$$

F. A. region correct - Q-point is ($201 \mu \mathrm{~A}, 4.32 \mathrm{~V}$)

Example 3 (2)

- All calculated currents $>0, V_{B C}=V_{B E}-V_{C E}=0.7-$ 4.32 = - 3.62 V

$$
V_{C E}=V_{c C}-R_{C}+\frac{R_{F}}{\alpha_{F}} I_{c}=12-38,200 I_{C}
$$

- Hence, base-collector junction is reverse-biased,
 rward-active region operation

The two points needed to plot the load line are $(0,12 \mathrm{~V})$ and ($314 \mu \mathrm{~A}, 0$).
ditidésuilting load line is plotted on common-emitter output characteristics.
$I_{B}=2.7 \mu \mathrm{~A}$, intersection of corresponding characteristic with load line gives Qpoint.

Four-Resistor Bias Network for BJT: Design Objectives

- We know that

$$
I_{E}=\frac{V_{E Q}-V_{B E}-R_{E Q} I_{B}}{R_{E}} \cong \frac{V_{E Q}-V_{B E}}{R_{E}} \text { for } \quad R_{E Q} I_{B} \ll\left(V_{E Q}-V_{B E}\right)
$$

- This implies that $I_{B} \ll I_{2}$, so that $I_{1}=I_{2}$. So base current doesn't disturb voltage divider action. Thus, Q-point is independent of base current as well as current gain.
- Also, $V_{E Q}$ is designed to be large enough that small variations in the assumed value of $V_{B E}$ won't affect I_{E}.
- Current in base voltage divider network is limited by choosing $\mathrm{I}_{2} \leq \mathrm{I}_{\mathrm{C}} / 5$. This ensures that power dissipation in bias resistors is $<17 \%$ of total quiescent power consumed by circuit and $I_{2} \gg I_{B}$ for $\beta>50$.

Four-Resistor Bias Network for BJT: Design Guidelines

- Choose Thévenin equivalent base voltage $\frac{V_{C C}}{4} \leq V_{E Q} \leq \frac{V_{C C}}{2}$
- Select R_{1} to set $I_{1}=9 I_{B} . \quad R_{1}=\frac{V_{E Q}}{9 I_{B}}$
- Select R_{2} to set $I_{2}=10 I_{B} . \quad R_{2}=\frac{V_{C C}-V_{E Q}}{10 I_{B}}$
- R_{E} is determined by $V_{E Q}$ and desired $I_{C} . \quad R_{E} \cong \frac{V_{E Q}-V_{B E}}{I_{C}}$
- R_{C} is determined by desired $V_{C E} . \quad R_{C} \cong \frac{V_{C C}-V_{C E}}{I_{C}}-R_{E}$

Example 4

- Problem: Design 4-resistor bias circuit with given parameters.
- Given data: $I_{C}=750 \mu \mathrm{~A}, \beta_{F}=100, V_{C C}=15 \mathrm{~V}, V_{C E}=5 \mathrm{~V}$
- Assumptions: Forward-active operation region, $V_{B E}=0.7 \mathrm{~V}$
- Analysis: Divide ($V_{C C}-V_{C E}$) equally between R_{E} and R_{C}. Thus, $V_{E}=5 \mathrm{~V}$ and $V_{C}=10 \mathrm{~V}$

$$
\begin{aligned}
& R_{C}=\frac{V_{C C}-V_{C}}{I_{C}}=6.67 \mathrm{k} \Omega \\
& R_{E}=\frac{V_{E}}{I_{E}}=6.60 \mathrm{k} \Omega \\
& V_{B}=V_{E}+V_{B E}=5.7 \mathrm{~V} \\
& I_{B}=\frac{I_{C}}{\beta_{F}}=7.5 \mu \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& I_{2}=10 I_{B}=75.0 \mu \mathrm{~A} \\
& I_{1}=9 I_{B}=67.5 \mu \mathrm{~A} \\
& R_{1}=\frac{V_{B}}{9 I_{B}}=84.4 \mathrm{k} \Omega \\
& R_{2}=\frac{V_{C C}-V_{B}}{10 I_{B}}=124 \mathrm{k} \Omega
\end{aligned}
$$

Example 5

- Problem: Find Q-point for pnp transistor in 2-resistor bias circuit with given parameters.
- Given data: $\beta_{F}=50, V_{C C}=9 \mathrm{~V}$
- Assumptions: Forward-active operation region, $V_{E B}=0.7 \mathrm{~V}$
- Analysis:

$$
\begin{aligned}
& 9=V_{E B}+18,000 I_{B}+1000\left(I_{C}+I_{B}\right) \\
& \therefore 9=V_{E B}+18,000 I_{B}+1000(51) I_{B} \\
& \therefore I_{B}=\frac{9 \mathrm{~V}-0.7 \mathrm{~V}}{69,000 \Omega}=120 \mu \mathrm{~A} \\
& I_{C}=50 I_{B}=6.01 \mathrm{~mA} \\
& V_{E C}=9-1000\left(I_{C}+I_{B}\right)=2.88 \mathrm{~V} \\
& V_{B C}=2.18 \mathrm{~V} \quad \text { Forward-active reg }
\end{aligned}
$$

Forward-active region operation is correct Q-point is: ($6.01 \mathrm{~mA}, 2.88 \mathrm{~V}$)

