Ain Shams University Faculty of Engineering

ECE142: Electronic Circuits Summer 2014

Sheet 1 Semiconductor Review

T=300	Si	Ge	GaAs
$n_i (cm^{-3})$	1.45×10^{10}	2.4×10^{13}	1.8×10^{6}
μ_n (cm ² /Vs)	1500	3900	8500
$\mu_{\rm p}$ (cm ² /Vs)	450	1900	400

Problem 1

- **a)** Explain qualitatively the differences in intrinsic carrier concentrations (n_i) for Ge, Si and GaAs. (Why is n_i highest for Ge? Why is it lowest for GaAs?)
- **b**) Explain qualitatively why n_i increases with increasing temperature.

Problem 2

Consider a Si sample under equilibrium conditions, doped with Boron to a concentration 10^{17} cm⁻³.

- **a**) At T = 300K, is this material n-type or p-type?
- **b**) What are the majority and minority carrier concentrations?

Problem 3

Consider a Si sample maintained at T = 300K under equilibrium conditions, doped with Boron to a concentration 2×10^{16} cm⁻³:

- a) What are the electron and hole concentrations (*n* and *p*) in this sample? Is it n-type or p-type?
- **b**) Suppose the sample is doped additionally with Phosphorus to a concentration 6×10^{16} cm⁻³. Is the material now n-type or p-type? What is the resistivity of this sample?

Problem 4

Ultra-thin semiconductor materials are of interest for future nanometer-scale transistors, but can present undesirably high resistance to current flow. How low must the resistivity of a semiconductor material be, to ensure that the resistance of a 2nm-thick, 10nm-long, 100nm-wide region does not exceed 100 ohms? If this material is n-type Si, estimate the dopant concentration that would be needed to achieve this resistivity.

Problem 5

A silicon sample maintained at 300 K under thermal equilibrium has a non-uniform doping concentration profile, such that the electron concentration, n, varies linearly from 1×10^{12} cm⁻³ to 5×10^{17} cm⁻³ while going from point x_1 to point x_2 . Assume that the mobility is constant at 1000 cm²/Vs throughout the sample.

- **a**) Calculate the diffusion coefficient, D_n (in cm²/s) for the electrons
- **b)** Plot the diffusion current density (A/cm^2) for the electrons as a function of x. Mark the numerical value on the graph. (Hint: What is the equation for diffusion current density?)

Problem 6

Explain using words and figures the four basic semiconductor fabrication processes.