

Assignment 3

Problem 1:

Calculate the mean-free path for argon atoms ($d_g=360~pm$) and helium atoms ($d_g=190~pm$) in atmospheric pressure and $T=20^{\circ}C$.

Problem 2:

A surface micromachined accelerometer has the intrinsic mechanical quality factor $Q_{intrinsic} = 50,000$, the anchor quality factor $Q_{anchor} = 1,000$, and the air damping quality factor $Q_{air} = 40$. Calculate the total quality factor.

Problem 3:

Consider the capacitive accelerometer shown below. Calculate the squeeze film spring constant, damping coefficient, and the accelerometer quality factor as a function of pressure in the pressure range of 10~Pa to 10^5Pa at f=1Hz. Assume the mechanical quality factor $Q_{mech}=10$ and for air ($d_g=3.65~A,~\mu=1.8\times10^{-5}~Pa.s$). For the given accelerometer the nominal gap is $d=2.5~\mu m$ and the area is $A=1200~\mu m\times1200~\mu m$, its thickness $t=550\mu m$ and the stiffness of the mechanism K=40~N/m.

Problem 4:

Considering the previous problem. Assuming that the accelerometer is operated in atmospheric pressure and there is no perforation to reduce damping, how large must the electrode gap d be to obtain quality factors greater than Q>0.1?

Problem 5:

A square micro-mirror that moves up and down is made of SOI wafer. The mirror thickness is $t=5~\mu m$ and the gap under the mirror is $d=10~\mu m$. Estimate the maximum mirror size if the desired quality factor is Q=1 and the desired resonant frequency is $f_0=500~Hz$.

Problem 6:

A double-supported beam-mass silicon structure is shown in the figure below, where $a_1=500\mu m$, $b=50\mu m$, $h=10\mu m$, A=B=4mm, $H=300\mu m$ and the total damping coefficient c=1 N. sec/m. The mass is subjected to a harmonic excitation $F=F_0\sin(\omega t)$, $F_0=1mN$ in the lateral direction. If the mass of the beam and the bending of the mass are negligible, find:

- 1- The undamped natural frequency in the lateral direction.
- 2- The damping ratio of the system.
- 3- The amplitude of oscillation of the mass as a function of the excitation force.
- 4- The amplitude of oscillation at resonance.
- 5- The amplitude of oscillation at $\omega = 3\omega_o$.
- 6- The Quality factor of the system.
- 7- The bandwidth of the system.

