CSE468: IMAGE PROCESSING

Digital Image Fundamentals

Lecturer: Dr. Hossam Hassan

Email: hossameldin.hassan@eng.asu.edu.eg

Computer and Systems Engineering

Basic Relationship b/w pixels

- Neighbors of a pixel
- Connectivity
- Labeling of Connected Components
- Relations, Equivalences, and Transitive Closure
- Distance Measures
- Arithmetic/Logic Operations

Neighbors of a pixel

a pixel p at coordinate (x,y) has

```
■ N_4(p): 4-neighbors of p
(x+1, y), (x-1,y),(x,y+1), (x,y-1)
```

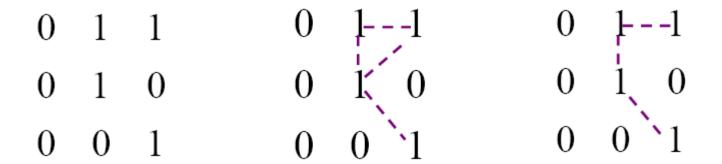
```
• N_D(p): 4-diagonal neighbors of p (x+1, y+1), (x+1,y-1),(x-1,y+1), (x-1,y-1) _X _X
```

■
$$N_8(p)$$
: 8-neighbors of p: $X X X$
a combination of $N_4(p)$ and $N_D(p)$ $X P X$
 $X X X$

Connectivity

- Let V be the set of gray-level values used to defined connectivity
 - 4-connectivity:
 - 2 pixels p and q with values from V are 4-connected if q is in the set N₄(p)
 - 8-connectivity:
 - 2 pixels p and q with values from V are 8-connected if q is in the set N₈(p)
 - m-connectivity (mixed connectivity):
 - 2 pixels p and q with values from V are m-connected if
 - q is in the set N₄(p) or
 - q is in the set $N_D(p)$ and the set $N_4(p) \cap N_4(q)$ is empty.
 - (the set of pixels that are 4-neighbors of both p and q whose values are from V)

Example



 m-connectivity eliminates the multiple path connections that arise in 8-connectivity.

Adjacent

- a pixel p is adjacent to a pixel q if they are connected.
- two image area subsets S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel S2.

Path

 a path from pixel p with coordinates (x,y) to pixel q with coordinates (s,t) is a sequence of distinct pixels with coordinates

$$(x_0,y_0),(x_1,y_1),...(x_n,y_n)$$

where $(x_0,y_0) = (x,y)$, $(x_n,y_n) = (s,t)$ and (x_i,y_i) is adjacent to (x_{i-1},y_{i-1})

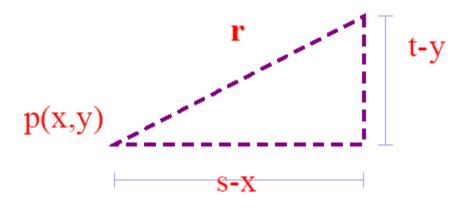
- n is the length of the path
- we can define 4-,8-, or m-paths depending on type of adjacency specified.

Distance Measures

- for pixel p, q and z with coordinates (x,y), (s,t) and (u,v) respectively,
- D is a distance function or metric if
 - (a) $D(p,q) \ge 0$; D(p,q) = 0 iff D=q
 - (b) D(p,q) = D(q,p)
 - (c) $D(p,z) \le D(p,q) + D(q,z)$

Euclidean Distance between p and q

$$D_e(p,q) = \left[(x-s)^2 + (y-t)^2 \right]^{\frac{1}{2}}$$



radius (r) centered at (x,y)

City-block Distance: D₄

$$D_4(p,q) = |x-s| + |y-t|$$

$$2 \quad 1 \quad 2$$

$$2 \quad 1 \quad 0 \quad 1 \quad 2$$

$$2 \quad 1 \quad 2$$

$$3 \quad 2 \quad 0 \quad 1 \quad 2$$

$$4 \quad 2 \quad 1 \quad 2 \quad 0 \quad 1 \quad 2$$

$$5 \quad 2 \quad (x,y)$$

Chessboard distance: D₈

$$D_8(p,q) = \max(|x-s|+|y-t|)$$

```
2
2
2
2
1
1
1
2
1
0
1
2
1
1
2
2
3
2
2
2
2
3
2
2
3
2
3
2
3
2
3
2
3
4
4
5
6
7
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9<
```

square centered at (x,y)

Arithmetic operators

- used extensively in most branches of image processing.
- Arithmetic operations b/w 2 pixels p and q :
 - Addition: p+q used in image average to reduce noise.
 - Subtraction: p-q basic tool in medical imaging.
 - Multiplication : pxq
 - to correct gray-level shading result from nonuniformities in illumination or in the sensor used to acquire the image.
 - Division : p÷q
- Arithmetic Operation entire images are carried out pixel by pixel.

Logic operators

- $\bullet AND : p AND q \qquad (p \bullet q)$
- OR: p OR q (p+q)
- COMPLEMENT: NOT q (q)
- logic operations apply only to binary images.
- arithmetic operations apply to multivalued pixels.
- logic operations used for tasks such as masking, feature detection, and shape analysis.
- logic operations perform pixel by pixel.

Mask operation

 Besides pixel-by-pixel processing on entire images, arithmetic and Logical operations are used in neighborhood oriented operations.

	÷		
Z_1	Z_2	Z_3	
 Z_4	Z_5	Z_6	
Z_7	Z_8	Z_9	
	÷		

Mask Operation

- Let the value assigned to a pixel be a function of its gray level and the gray level of its neighbors.
- e.g., replace the gray value of pixel Z₅ with the average gray values of it's neighborhood within a 3x3 mask.

$$Z = \frac{1}{9}(Z_1 + Z_2 + Z_3 + ... + Z_9)$$

Mask Operator

In general term:

$$Z = \frac{1}{9} Z_1 + \frac{1}{9} Z_2 + \frac{1}{9} Z_3 + \dots + \frac{1}{9} Z_9$$

$$= w_1 Z_1 + w_2 Z_2 + w_3 Z_3 + \dots + w_9 Z_9$$

$$= \sum_{i=1}^{9} w_i Z_i$$

Wl	W_2	W_3	
W_4	W_5	W ₆	
W ₇	W ₈	W ₉	

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Mask Coefficient

- Proper selection of the coefficients and application of the mask at each pixel position in an image makes possible a variety of useful image operations
 - noise reduction
 - region thinning
 - edge detection
- Applying a mask at each pixel location in an image is a computationally expensive task.

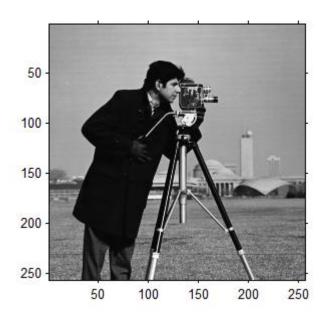
Image Geometry

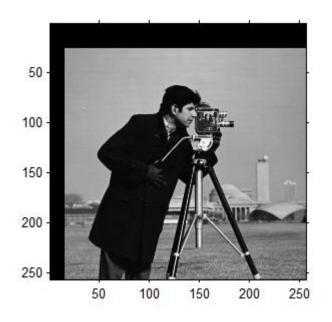
Basic image transformation (can be in 2D or 3D):-

- Scaling
- Rotation
- Translation

Transformation Matrix

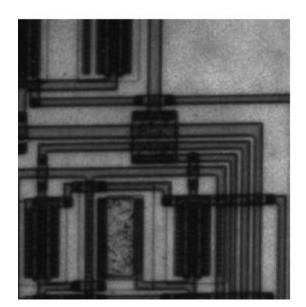
• Translation (Example in 2D)
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}.$$

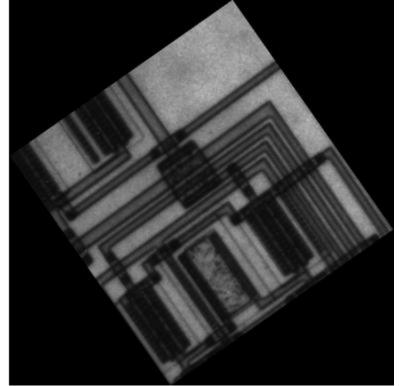




Transformation Matrix

• Rotation Matrix (Example in 2D)
$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

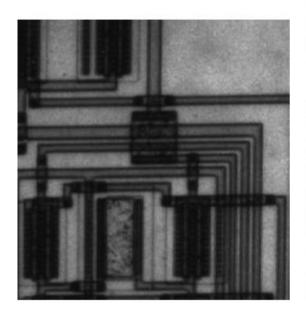




Transformation Matrix

Scaling/Resizing

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{sx} & 0 & 0 \\ 0 & \mathbf{sy} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



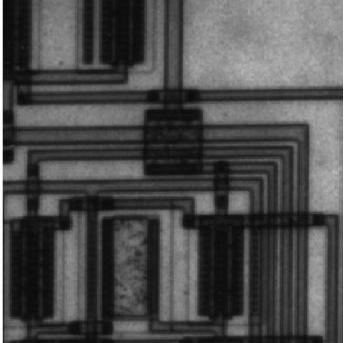


Image Courtesy of Steve Decker and Shujaat Nadeem

Projective Transformation Matrix

$$\begin{cases} \hat{x} = \frac{xh_1 + yh_2 + h_3}{xh_7 + yh_8 + h_9} \\ \hat{y} = \frac{xh_4 + yh_5 + h_6}{xh_7 + yh_8 + h_9} \end{cases} H = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \\ h_7 & h_8 & h_9 \end{bmatrix}$$

Hierarchy of Coordinate Transformations

	Transformation	Preserves	Icon
	translation	orientation	
*	rigid (Euclidean)	lengths	
	similarity	angles	
	affine	parallelism	
	projective	straight lines	

^{*}Homogeneous Scaling, rotation, and translation