Sheet 2, Verilog & Logic Design

- 1. Write three different descriptions of a full adder. One description should use gate-level models, another should use continuous assignment statements, and the third should use combinational always.
- 2. Draw the wave diagram of the clock generated by the following module:

```
module m555 (clock);
output clock;
reg clock;
initial
#5 clock = 1;
always
#50 clock = ~clock;
endmodule
```

- 3. Change the module m555 (of the previous problem) such that the clock period remains the same but the duty cycle becomes 40%.
- 4. Write a two phase clock generator. Phase 2 should be offset from phase 1 by one quarter of a cycle.
- 5. Keeping the same output timing, replace the initial and always statements in the module m555 with gate primitives.
- 6. Here's a Verilog module that is complete except for the *register*, *input*, and *output* declarations. What should they be? Assume **a**, **b**, and **c** are 8-bit "things" and the others are single bit. Note that you may have to add to the input/output list. Do not add any more assignments (only input, output, and register declarations).

```
module silly (a,b,c,q, ...);

// oops, forgot the declarations!
initial
    q = 1'b0;

always
    begin
    @(posedge y)
    #10 a = b + c;
    q = ~q;
    end
    nand #10 (y,q,r);
endmodule
```

7. Choose the right answer

- a. The idea behind signal concurrency is that all signals in a simulation are executed at ______.
 A. a fixed time B. the same time C. a predetermined time D. Eastern-Daylight Time.
- b. Which of the following is an invalid name in Verilog?A. DECODE8 B. _WHAT_4 C. \$INVALID D. All are valid
- c. A digital circuit designed to detect the presence of a particular digital state is called: A. Multiplexer B. Decoder C. Parity Generator D. Encoder
- d. A circuit that generates a binary code at its outputs in response to one or more active input lines.

 A. Encoder B. Decoder C. Demultiplexer D. Shift-Register
- e. Which of the following best represents the INOUT mode?

- f. A circuit that uses a binary decoder to direct a digital signal from a single source to one of several destinations.
 - A. Decoder B. Multiplexer C. Demultiplexer D. Parity Generator
- g. An error-checking system that requires a binary number to have an even number of 1s. A. Even Parity B. Parity C. Odd Parity D. Multiplexer
- 8. Write a Verilog code for a D-type f/f with synchronous reset.
- 9. Write a Verilog code for a D-type f/f with asynchronous reset.
- 10. Assume A = "0011", B = "011", C = "101", what with be result of the following statements:
 - a. A + (B|C)
 - b. ~&A
 - c. (A == B) ? B:C
 - d. $\{A,\{2\{C\}\}\}$